📄 rfc1193.txt
字号:
Objection 4: Delay bounds are not necessary, throughput requirements
suffice.
Guaranteeing minimum throughput bounds does not automatically and in
general result in any stringent upper bound on delay. Delays in the
hosts and nodes of a packet-switching network fluctuate because of
bursty real-time message streams, starting and ending of traffic on
individual connections (even those with continuous, constant-rate
traffic), and the behavior of scheduling algorithms. Even if delays
did not fluctuate, but had a constant value, it would be possible for
a given throughput bound to be satisfied with many different constant
values for the delay of each message. If delay bounds are wanted,
they must be explicitly guaranteed and enforced. (In a circuit-
switching network, the circuit assigned to a connection has its own
throughput and its own delay. These values may be considered as
explicitly guaranteed and enforced.)
But are delay bounds wanted? We believe they are in digital video
and audio communication, especially in the form of delay jitter
bounds, and they will be in other contexts as soon as a service which
can bound delays is offered.
Objection 5: Satisfaction of statistical bounds is impossible to
verify.
Strictly speaking, this objection is valid. No matter how many
packets on a connection have been delayed beyond their bound (or lost
or delivered with errors), it is always in principle possible for the
server to redress the situation in the future and meet the given
statistical requirements. A more sensible and verifiable bound would
be a fractional one (see Section 3). For instance, such a bound
could be specified as follows: out of 100 consecutive packets, no
less than 97 shall not be late. In this case, the bound is no longer
Zmin, a probability of 0.97, but is given by the two values B = 97
and A = 100; it is not only their ratio that counts but also their
individual values.
Ferrari [Page 20]
RFC 1193 Requirements for Real-Time Services November 1990
8. Conclusion
This paper has presented a specification of some of the requirements
that human clients and applications may wish to impose on real-time
communications. Though those listed seem to be among the most useful
and natural ones, no attempt has been made to be exhaustive and
comprehensive.
We have investigated delay bounds, throughput bounds, reliability
bounds, and other requirements. We have studied how the requirements
should be translated from the client's level into forms suitable (and
correct) for lower levels, described some examples of requirement
specification, and discussed some of the objections that may be
raised.
The material in this paper covers only part of the first phase in the
design of a real-time service: that during which the various
requirements are assembled and examined to extract useful suggestions
for the design of the server. Server needs and design principles
will be the subject of the subsequent paper mentioned several times
above.
Acknowledgments
Ralf Herrtwich and Dinesh Verma contributed ideas to, and corrected
mistakes in, a previous version of the manuscript. The author is
deeply indebted to them for their help and for the many discussions
he had with them on the topics dealt with in this paper. The
comments of Ramesh Govindan and Riccardo Gusella are also gratefully
acknowledged.
References
[Brad64] Brady, P., "A Technique for Investigating On-Off Patterns
of Speech", Bell Systems Technical Journal, Vol. 44,
Pgs. 1-22, 1964.
[Ferr89a] Ferrari, D., "Real-Time Communication in
Packet-Switching Wide-Area Networks", Technical Report
TR-89-022, International Computer Science Institute,
Berkeley, May 1989.
[Ferr89b] Ferrari D., and D. Verma, "A Scheme for Real-Time Channel
Establishment in Wide-Area Networks", IEEE J. Selected
Areas Communications SAC-8, April 1990.
[Gait90] Gaitonde, S., D. Jacobson, and A. Pohm, "Bounding Delay on
a Multifarious Token Ring Network", Communications of the
Ferrari [Page 21]
RFC 1193 Requirements for Real-Time Services November 1990
ACM, Vol. 33, No. 1, Pgs. 20-28, January 1990.
[Herr89] Herrtwich R., and U. Brandenburg, "Accessing and
Customizing Services in Distributed Systems", Technical
Report TR-89-059, International Computer Science Institute,
Berkeley, October 1989.
[Herr90] Herrtwich, R, personal communication, February 1990.
[Verm90] Verma, D., personal communication, February 1990.
Table Ia
Examples of Client Requirements
Interactive Non-Interactive
Voice Video
Delay Bounds
deterministic:Dmax [ms] 200 - (1000) -
statistical:Dmax [ms] - 200 - (1000)
Zmin - (*) - (*)
jitter:Jmax [ms] 1 5
Throughput Bounds
deterministic:Tmin [kby/s] 8.834 4140
average:Tave [kby/s] 3.933 4140
I [s] 100 100
Reliability Bound:Wmin 0.98 (*) (0.90) (*)
Delay&Reliability:ZminWmin - 0.98 - 0.90
Sequencing yes yes
Absence of Duplications yes yes
Failure Recovery:
max.repair time [s] 10 100
Max.Setup Time [s] 0.8 (o) 15 (o)
----------------------------------
(*) To be chosen by the server
(o) Could be much longer if advance reservations were required
(+) Could be achieved by using a preexisting connection
Ferrari [Page 22]
RFC 1193 Requirements for Real-Time Services November 1990
Table Ib
Examples of Client Requirements
Real-Time File
Datagram Transfer
Delay Bounds
deterministic:Dmax [ms] 50 - (1500)
statistical:Dmax [ms] - (1000) -
Zmin - (0.95) -
jitter:Jmax [ms] - -
Throughput Bounds
deterministic:Tmin [kby/s] - 728
average:Tave [kby/s] - 700
I [s] - 100
Reliability Bound:Wmin 0.98 1
Delay&Reliability:ZminWmin - -
Sequencing - yes
Absence of Duplications yes yes
Failure Recovery:
max.repair time [s] - 100
Max.Setup Time [s] 0 (+) 5 (o)
----------------------------------
(*) To be chosen by the server
(o) Could be much longer if advance reservations were required
(+) Could be achieved by using a preexisting connection
Ferrari [Page 23]
RFC 1193 Requirements for Real-Time Services November 1990
Table II
Translation of the Requirements in Table I
Non-Interactive File
Video Transfer
Delay Bounds
deterministic:Dmax' [ms] (966) - - (1482)
statistical:Dmax' [ms] - (966) (982) -
Zmin' - (*) (0.95) -
jitter:Jmax' [ms] 5 -
Reliability Bound:Wmin' 0.90-1 (*) 1
Delay&Reliability:(ZminWmin)' - 0.90-1 -
_____________________________________
(*) To be chosen by the server
Security Considerations
Security considerations are not discussed in this memo.
Author's Address
Domenico Ferrari
University of California
Computer Science Division
EECS Department
Berkeley, CA 94720
Phone: (415) 642-3806
EMail: ferrari@UCBVAX.BERKELEY.EDU
Ferrari [Page 24]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -