⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc2630.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 5 页
字号:

      OriginatorIdentifierOrKey ::= CHOICE {
        issuerAndSerialNumber IssuerAndSerialNumber,
        subjectKeyIdentifier [0] SubjectKeyIdentifier,
        originatorKey [1] OriginatorPublicKey }

      OriginatorPublicKey ::= SEQUENCE {
        algorithm AlgorithmIdentifier,
        publicKey BIT STRING }

      RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey

      RecipientEncryptedKey ::= SEQUENCE {
        rid KeyAgreeRecipientIdentifier,
        encryptedKey EncryptedKey }

      KeyAgreeRecipientIdentifier ::= CHOICE {
        issuerAndSerialNumber IssuerAndSerialNumber,
        rKeyId [0] IMPLICIT RecipientKeyIdentifier }

      RecipientKeyIdentifier ::= SEQUENCE {
        subjectKeyIdentifier SubjectKeyIdentifier,
        date GeneralizedTime OPTIONAL,
        other OtherKeyAttribute OPTIONAL }

      SubjectKeyIdentifier ::= OCTET STRING



Housley                     Standards Track                    [Page 17]

RFC 2630              Cryptographic Message Syntax             June 1999


   The fields of type KeyAgreeRecipientInfo have the following meanings:

      version is the syntax version number.  It shall always be 3.

      originator is a CHOICE with three alternatives specifying the
      sender's key agreement public key.  The sender uses the
      corresponding private key and the recipient's public key to
      generate a pairwise key.  The content-encryption key is encrypted
      in the pairwise key.  The issuerAndSerialNumber alternative
      identifies the sender's certificate, and thereby the sender's
      public key, by the issuer's distinguished name and the certificate
      serial number.  The subjectKeyIdentifier alternative identifies
      the sender's certificate, and thereby the sender's public key, by
      the X.509 subjectKeyIdentifier extension value.  The originatorKey
      alternative includes the algorithm identifier and sender's key
      agreement public key. Permitting originator anonymity since the
      public key is not certified.

      ukm is optional.  With some key agreement algorithms, the sender
      provides a User Keying Material (UKM) to ensure that a different
      key is generated each time the same two parties generate a
      pairwise key.

      keyEncryptionAlgorithm identifies the key-encryption algorithm,
      and any associated parameters, used to encrypt the content-
      encryption key in the key-encryption key.  The key-encryption
      process is described in Section 6.4.

      recipientEncryptedKeys includes a recipient identifier and
      encrypted key for one or more recipients.  The
      KeyAgreeRecipientIdentifier is a CHOICE with two alternatives
      specifying the recipient's certificate, and thereby the
      recipient's public key, that was used by the sender to generate a
      pairwise key-encryption key.  The recipient's certificate must
      contain a key agreement public key.  The content-encryption key is
      encrypted in the pairwise key-encryption key.  The
      issuerAndSerialNumber alternative identifies the recipient's
      certificate by the issuer's distinguished name and the certificate
      serial number; the RecipientKeyIdentifier is described below.  The
      encryptedKey is the result of encrypting the content-encryption
      key in the pairwise key-encryption key generated using the key
      agreement algorithm.

   The fields of type RecipientKeyIdentifier have the following
   meanings:

      subjectKeyIdentifier identifies the recipient's certificate by the
      X.509 subjectKeyIdentifier extension value.



Housley                     Standards Track                    [Page 18]

RFC 2630              Cryptographic Message Syntax             June 1999


      date is optional.  When present, the date specifies which of the
      recipient's previously distributed UKMs was used by the sender.

      other is optional.  When present, this field contains additional
      information used by the recipient to locate the public keying
      material used by the sender.

6.2.3  KEKRecipientInfo Type

   Recipient information using previously distributed symmetric keys is
   represented in the type KEKRecipientInfo.  Each instance of
   KEKRecipientInfo will transfer the content-encryption key to one or
   more recipients who have the previously distributed key-encryption
   key.

      KEKRecipientInfo ::= SEQUENCE {
        version CMSVersion,  -- always set to 4
        kekid KEKIdentifier,
        keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
        encryptedKey EncryptedKey }

      KEKIdentifier ::= SEQUENCE {
        keyIdentifier OCTET STRING,
        date GeneralizedTime OPTIONAL,
        other OtherKeyAttribute OPTIONAL }

   The fields of type KEKRecipientInfo have the following meanings:

      version is the syntax version number.  It shall always be 4.

      kekid specifies a symmetric key-encryption key that was previously
      distributed to the sender and one or more recipients.

      keyEncryptionAlgorithm identifies the key-encryption algorithm,
      and any associated parameters, used to encrypt the content-
      encryption key with the key-encryption key.  The key-encryption
      process is described in Section 6.4.

      encryptedKey is the result of encrypting the content-encryption
      key in the key-encryption key.

   The fields of type KEKIdentifier have the following meanings:

      keyIdentifier identifies the key-encryption key that was
      previously distributed to the sender and one or more recipients.

      date is optional.  When present, the date specifies a single key-
      encryption key from a set that was previously distributed.



Housley                     Standards Track                    [Page 19]

RFC 2630              Cryptographic Message Syntax             June 1999


      other is optional.  When present, this field contains additional
      information used by the recipient to determine the key-encryption
      key used by the sender.

6.3  Content-encryption Process

   The content-encryption key for the desired content-encryption
   algorithm is randomly generated.  The data to be protected is padded
   as described below, then the padded data is encrypted using the
   content-encryption key.  The encryption operation maps an arbitrary
   string of octets (the data) to another string of octets (the
   ciphertext) under control of a content-encryption key.  The encrypted
   data is included in the envelopedData encryptedContentInfo
   encryptedContent OCTET STRING.

   The input to the content-encryption process is the "value" of the
   content being enveloped.  Only the value octets of the envelopedData
   encryptedContentInfo encryptedContent OCTET STRING are encrypted; the
   OCTET STRING tag and length octets are not encrypted.

   Some content-encryption algorithms assume the input length is a
   multiple of k octets, where k is greater than one.  For such
   algorithms, the input shall be padded at the trailing end with
   k-(lth mod k) octets all having value k-(lth mod k), where lth is
   the length of the input.  In other words, the input is padded at
   the trailing end with one of the following strings:

                     01 -- if lth mod k = k-1
                  02 02 -- if lth mod k = k-2
                      .
                      .
                      .
            k k ... k k -- if lth mod k = 0

   The padding can be removed unambiguously since all input is padded,
   including input values that are already a multiple of the block size,
   and no padding string is a suffix of another.  This padding method is
   well defined if and only if k is less than 256.

6.4  Key-encryption Process

   The input to the key-encryption process -- the value supplied to the
   recipient's key-encryption algorithm -- is just the "value" of the
   content-encryption key.

   Any of the three key management techniques can be used for each
   recipient of the same encrypted content.




Housley                     Standards Track                    [Page 20]

RFC 2630              Cryptographic Message Syntax             June 1999


7  Digested-data Content Type

   The digested-data content type consists of content of any type and a
   message digest of the content.

   Typically, the digested-data content type is used to provide content
   integrity, and the result generally becomes an input to the
   enveloped-data content type.

   The following steps construct digested-data:

      1.  A message digest is computed on the content with a message-
      digest algorithm.

      2.  The message-digest algorithm and the message digest are
      collected together with the content into a DigestedData value.

   A recipient verifies the message digest by comparing the message
   digest to an independently computed message digest.

   The following object identifier identifies the digested-data content
   type:

      id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
          us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }

   The digested-data content type shall have ASN.1 type DigestedData:

      DigestedData ::= SEQUENCE {
        version CMSVersion,
        digestAlgorithm DigestAlgorithmIdentifier,
        encapContentInfo EncapsulatedContentInfo,
        digest Digest }

      Digest ::= OCTET STRING

   The fields of type DigestedData have the following meanings:

      version is the syntax version number.  If the encapsulated content
      type is id-data, then the value of version shall be 0; however, if
      the encapsulated content type is other than id-data, then the
      value of version shall be 2.

      digestAlgorithm identifies the message digest algorithm, and any
      associated parameters, under which the content is digested.  The
      message-digesting process is the same as in Section 5.4 in the
      case when there are no signed attributes.




Housley                     Standards Track                    [Page 21]

RFC 2630              Cryptographic Message Syntax             June 1999


      encapContentInfo is the content that is digested, as defined in
      section 5.2.

      digest is the result of the message-digesting process.

   The ordering of the digestAlgorithm field, the encapContentInfo
   field, and the digest field makes it possible to process a
   DigestedData value in a single pass.

8  Encrypted-data Content Type

   The encrypted-data content type consists of encrypted content of any
   type.  Unlike the enveloped-data content type, the encrypted-data
   content type has neither recipients nor encrypted content-encryption
   keys.  Keys must be managed by other means.

   The typical application of the encrypted-data content type will be to
   encrypt the content of the data content type for local storage,
   perhaps where the encryption key is a password.

   The following object identifier identifies the encrypted-data content
   type:

      id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
          us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }

   The encrypted-data content type shall have ASN.1 type EncryptedData:

      EncryptedData ::= SEQUENCE {
        version CMSVersion,
        encryptedContentInfo EncryptedContentInfo,
        unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }

   The fields of type EncryptedData have the following meanings:

      version is the syntax version number.  If unprotectedAttrs is
      present, then version shall be 2.  If unprotectedAttrs is absent,
      then version shall be 0.

      encryptedContentInfo is the encrypted content information, as
      defined in Section 6.1.

      unprotectedAttrs is a collection of attributes that are not
      encrypted.  The field is optional.  Useful attribute types are
      defined in Section 11.





⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -