⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc3202.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 5 页
字号:
   containing reference points (C) and (B).

   For devices with both local and remote knowledge, the two rows can
   exist in any combination on either device.  For this example, the
   transmitting devices will be responsible for information regarding
   the flow for which they are the origin.  Only one row is required per
   device for this example.




Steinberger & Nicklass      Standards Track                    [Page 12]

RFC 3202           Frame Relay Service Level Defs MIB       January 2002


   (A) frsldPvcCtrlTransmitRP for Device 1 = ingTxLocalRP(2)

   (B) frsldPvcCtlrReceiveRP for Device 1 = eqoRxRemoteRP(11)

   (C) frsldPvcCtrlTransmitRP for Device 2 = ingTxLocalRP(2)

   (D) frsldPvcCtlrReceiveRP for Device 2 = eqoRxRemoteRP(11)

3.6.2.1.2.  Edge-to-Edge Egress Queue Reference Point Example

            Device 1                               Device 2
         +-------------+                        +-------------+
         |   Ingress   |                        |   Egress    |
         |   +-----+   |                        |   +-----+   |
         |(A)|     |   |      Traffic Flow      |(B)|     |   |
      -->-->--     -->-->-->-->-->-->-->-->-->-->-->-     -->-->-->
         |   |     |   |   From Device 1 to 2   |   |     |   |
         |   +-----+   |                        |   +-----+   |
         |             |                        |             |
         |   Egress    |                        |   Ingress   |
         |   +-----+   |                        |   +-----+   |
         |   |     |(D)|      Traffic Flow      |   |     |(C)|
      <--<--<-     -<--<--<--<--<--<--<--<--<--<--<--     --<--<--
         |   |     |   |   From Device 2 to 1   |   |     |   |
         |   +-----+   |                        |   +-----+   |
         +-------------+                        +-------------+

            where (A), (B), (C) and (D) are reference points

                                Figure 4

   For devices with only local knowledge, one row is required on each
   device as follows:

   (A) frsldPvcCtrlTransmitRP for Device 1 = ingTxLocalRP(2)

   (B) frsldPvcCtlrReceiveRP for Device 2 = eqiRxLocalRP(4)

   (C) frsldPvcCtrlTransmitRP for Device 2 = ingTxLocalRP(2)

   (D) frsldPvcCtlrReceiveRP for Device 1 = eqiRxLocalRP(4)

   In which a single row is created on Device 1 containing reference
   points (A) and (D), and a single row is created on Device 2
   containing reference points (C) and (B).






Steinberger & Nicklass      Standards Track                    [Page 13]

RFC 3202           Frame Relay Service Level Defs MIB       January 2002


   For devices with both local and remote knowledge, the two rows can
   exist in any combination on either device.  For this example, the
   transmitting devices will be responsible for information regarding
   the flow for which they are the origin.  Only one row is required per
   device for this example.

   (A) frsldPvcCtrlTransmitRP for Device 1 = ingTxLocalRP(2)

   (B) frsldPvcCtlrReceiveRP for Device 1 = eqiRxRemoteRP(10)

   (C) frsldPvcCtrlTransmitRP for Device 2 = ingTxLocalRP(2)

   (D) frsldPvcCtlrReceiveRP for Device 2 = eqiRxRemoteRP(10)

3.6.2.1.3.  End-to-End Using Reference Point Example

            Device 1                               Device 2
         +-------------+                        +-------------+
         |   Source    |                        | Destination |
         |   +-----+   |                        |   +-----+   |
         |(A)|     |   |      Traffic Flow      |   |     |(B)|
      -->-->--     -->-->-->-->-->-->-->-->-->-->-->-     -->-->-->
         |   |     |   |   From Device 1 to 2   |   |     |   |
         |   +-----+   |                        |   +-----+   |
         |             |                        |             |
         | Destination |                        |   Source    |
         |   +-----+   |                        |   +-----+   |
         |(D)|     |   |      Traffic Flow      |   |     |(C)|
      <--<--<-     -<--<--<--<--<--<--<--<--<--<--<--     --<--<--
         |   |     |   |   From Device 2 to 1   |   |     |   |
         |   +-----+   |                        |   +-----+   |
         +-------------+                        +-------------+

            where (A), (B), (C) and (D) are reference points

                                Figure 5

   For devices with only local knowledge, one row is required on each
   device as follows:

   (A) frsldPvcCtrlTransmitRP for Device 1 = srcLocalRP(1)

   (B) frsldPvcCtlrReceiveRP for Device 2 = desLocalRP(1)

   (C) frsldPvcCtrlTransmitRP for Device 2 = srcLocalRP(1)

   (D) frsldPvcCtlrReceiveRP for Device 1 = desLocalRP(1)




Steinberger & Nicklass      Standards Track                    [Page 14]

RFC 3202           Frame Relay Service Level Defs MIB       January 2002


   In which a single row is created on Device 1 containing reference
   points (A) and (D), and a single row is created on Device 2
   containing reference points (C) and (B).

   For devices with both local and remote knowledge, the two rows can
   exist in any combination on either device.  For this example, the
   transmitting devices will be responsible for information regarding
   the flow for which they are the origin.  Only one row is required per
   device for this example.

   (A) frsldPvcCtrlTransmitRP for Device 1 = srcLocalRP(1)

   (B) frsldPvcCtlrReceiveRP for Device 1 = desRemoteRP(7)

   (C) frsldPvcCtrlTransmitRP for Device 2 = srcLocalRP(1)

   (D) frsldPvcCtlrReceiveRP for Device 2 = desRemoteRP(7)

3.6.3.  Creation Process

   In some cases, devices will automatically populate the rows of PVC
   Control Table and potentially the Sample Control Table.  However, in
   many cases, it may be necessary for a network manager to manually
   create rows.

   Manual creation of rows requires the following steps:

   1) Ensure the PVC exists between the two devices.

   2) Determine the necessary reference points for row creation.

   3) Create the row(s) in each device as needed.

   4) Create the row(s) in the sample control tables if desired.

3.6.4.  Destruction Process

3.6.4.1.  Manual Row Destruction

   Manual row destruction is straight forward.  Any row can be destroyed
   and the resources allocated to it are freed by setting the value of
   its status object (either frsldPvcCtrlStatus or frsldSmplCtrlStatus)
   to destroy(6).  It should be noted that when frsldPvcCtrlStatus is
   set to destroy(6) all associated sample control, sample and data
   table rows will also be destroyed.  Similarly, when
   frsldSmplCtrlStatus is set to destroy(6) all sample rows will also be





Steinberger & Nicklass      Standards Track                    [Page 15]

RFC 3202           Frame Relay Service Level Defs MIB       January 2002


   destroyed.  The frsldPvcCtrlPurge objects do not apply to manual row
   destruction.  If the row is set to destroy(6) manually, the rows are
   destroyed as part of the set.

3.6.4.2.  Automatic Row Destruction

   Rows is the tables may be destroyed automatically based on the
   existence of the DLCI on which they rely.  This behavior is
   controlled by the frsldPvcCtrlPurge and frsldPvcCtrlDeleteOnPurge
   objects.  When a DLCI no longer exists in the device, the data in the
   tables has no relation to anything known on the network.  However,
   there may be some need to keep the historic information active for a
   short period after the destruction or removal of a DLCI.  If the
   basis for the row no longer exists, the row will be destroyed at the
   end of the purge interval that is controlled by frsldPvcCtrlPurge.

   The effects of automatic row destruction are the same as manual row
   destruction.

3.6.5.  Modification Process

   All read-create items in this MIB module can be modified at any time
   if they are fully supported.  Write access is not required.  To
   simplify the use of the MIB frsldPvcCtrlWriteCaps and
   frsldSmplCtrlWriteCaps state which of the read-create variables can
   actually be written on a particular device.

3.6.6.  Collection Process

3.6.6.1.  Remote Polling

   This MIB module supports data collection through remote polling of
   the free running counters in the PVC Data Table.  Remote polling is a
   common method used to capture real-time statistics.  A remote
   management station polls the device to collect the desired
   information.  It is recommended all statistics for a single PVC be
   collected in a single PDU.

   The following objects are designed around the concept of real-time
   polling:

   o  frsldPvcDataMissedPolls
   o  frsldPvcDataFrDeliveredC
   o  frsldPvcDataFrDeliveredE
   o  frsldPvcDataFrOfferedC
   o  frsldPvcDataFrOfferedE
   o  frsldPvcDataDataDeliveredC
   o  frsldPvcDataDataDeliveredE



Steinberger & Nicklass      Standards Track                    [Page 16]

RFC 3202           Frame Relay Service Level Defs MIB       January 2002


   o  frsldPvcDataDataOfferedC
   o  frsldPvcDataDataOfferedE
   o  frsldPvcDataHCFrDeliveredC
   o  frsldPvcDataHCFrDeliveredE
   o  frsldPvcDataHCFrOfferedC
   o  frsldPvcDataHCFrOfferedE
   o  frsldPvcDataHCDataDeliveredC
   o  frsldPvcDataHCDataDeliveredE
   o  frsldPvcDataHCDataOfferedC
   o  frsldPvcDataHCDataOfferedE
   o  frsldPvcDataUnavailableTime
   o  frsldPvcDataUnavailables

3.6.6.2.  Sampling

   The sample tables provide the ability to historically sample data
   without requiring the additional overhead of polling.  At key
   periods, a network management station can collect the samples needed.
   This method allows the manager to perform the collection of data at
   times that will least affect the active network traffic.

   The sample data can be collected using a series of SNMP getNext or
   getBulk operations.  The value of frsldPvcSmplIdx increments with
   each new collection bucket.  This allows the managers to skip
   information that has already been collected.  However, care should be
   taken in that the value can roll over after a long period of time.

   The start and end times of a collection period allow the manager to
   know what the actual period of collection was.  It is possible for
   there to be discontinuities in the sample table, so both start and
   end should be referenced.

3.6.6.3.  User History

   User history, as defined in RFC 2021 [19], is an alternative
   mechanism that can be used to get the same benefits as the sample
   table by using the objects provided for real-time polling.  Some
   devices MAY have the ability to use user history and opt not to
   support the sample tables.  If this is the case, the information from
   the data table can be used to define a group of user history objects.

3.6.7.  Use of MIB Module in Calculation of Service Level Definitions

   The objects in this MIB module can be used to calculate the
   statistics defined in FRF.13 [17].  The description below describes
   the calculations for one direction of the data flow, i.e., data sent
   from local transmitter to a remote receiver.  A complete set of
   bidirectional information would require calculations based on both



Steinberger & Nicklass      Standards Track                    [Page 17]

RFC 3202           Frame Relay Service Level Defs MIB       January 2002


   directions.  For the purposes of this description, the reference
   points used SHOULD consistently represent data that is sent by one
   device and received by the other.

   A complete evaluation requires the combination of two uni-directional
   flows.  It is possible for a management station to combine all of the
   calculated information into one conceptual row.  Doing this requires
   that each of the metrics are collected for both flow directions and
   grouped by direction  If the information is split between two
   devices, the management station must know which two devices to
   communicate with for the collection of all information.  The grouping
   of information SHOULD be from ingress to egress in each flow
   direction.

   The calculations below use the following terminology:

   o  DelayAvg

         The average delay on the PVC.  This is represented within the
         MIB module by frsldPvcSmplDelayAvg.

   o  FrDeliveredC

         The number of frames received by the receiving device through
         the receive reference point that were delivered within CIR.
         This is represented within the MIB module by one of
         frsldPvcDataFrDeliveredC, frsldPvcDataHCFrDeliveredC,
         frsldPvcSmplFrDeliveredC, or frsldPvcSmplHCFrDeliveredC.

   o  FrDeliveredE

         The number of frames received by the receiving device through
         the receive reference point that were delivered in excess of
         CIR.  This is represented within the MIB module by one of
         frsldPvcDataFrDeliveredE, frsldPvcDataHCFrDeliveredE,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -