📄 009.htm
字号:
<html>
<head>
<title>黄金书屋---我的哲学的发展</title>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=gb2312">
<style>
#page {position:absolute; z-index:0; left:0px; top:0px}
.swy1 {font: 12pt/16pt "宋体"}
.swy2 {font: 9pt/12pt "宋体"}
</style>
</head>
<BODY TEXT="#000000" BGCOLOR="#E4EBF1" LINK="#0000EE" VLINK="#551A8B" ALINK="#FF0000">
<span class="swy2">
<A HREF="index.html">我的哲学的发展</A>
</span>
<CENTER><B><FONT FACE="楷体_GB2312"><FONT COLOR="#FF6666"><FONT SIZE=5>第八章 《数学原理》:</FONT></FONT></font></B></CENTER>
<center><HR WIDTH="85%"></CENTER>
<div align="center">
<table border="0">
<tr>
<td><pre><span class="swy1"> 数学方面
大家只从哲学的观点来看《数学原理》,怀特海和我对此都表失望。对于关于矛盾
的讨论和是否普通数学是从纯乎逻辑的前提正确地演绎出来的问题,大家很有兴趣,但
是对于这部书里所发现的数学技巧,大家是不感兴趣的。我从前知道只有六个人读了这
部书的后面几部分。其中三个是波兰人,后来(我相信)被希特勒给清算掉了。另外三
个是得克萨斯州人,后来被同化得很满意。甚至有些人,他们所研究的问题和我们的问
题完全一样,认为不值得查一查《数学原理》关于这些问题是怎么说的。我举两个例子:
大约在《数学原理》出版十年之后,《数学纪事》发表了一篇长文,其中一些结果我们
在我们的书里的第四部分不约而同早已经弄出来了。这篇文章里有些错误,我们却避免
了,可是没有一个正确的地方不是我们已经发表过的。这篇文章的作者显然完全不知道
他的这种工作早已经有人先他而为之了。第二个例子是在我在加利福尼亚大学和莱申巴
赫同事的时候出现的。他告诉我,他有一项发明,他把数学归纳法引伸了。他名之为
“超限归纳法”。我对他说,这个问题是在《数学原理》的第三卷里充分讨论过的。过
了一个星期,他对我说,他已经证实了这一点。我想在本章里尽可能不过于专门,从数
学的观点,不从哲学的观点,把《数学原理》我认为重要的几方面解释一下。
我先从一个问题着手,这是一个哲学上的问题,也同样是一个数学上的问题,就是,
关系的重要性。在我的论莱布尼茨的书里,我曾着重讨论过有关系的事实和命题的重要
性,和这些相对立的是由本体——和——属性而成的事实和由主辞——和——宾辞而成
的命题。我发现对关系所持的偏见在哲学和数学里是发生了不良影响的。正象莱布尼茨
未获成功的努力一样,布尔的数理逻辑是讨论类的包含的,而且只是三段论法的一种发
展。皮尔斯曾弄出一种关系逻辑,但他是把关系当作一种由双而成的类。这在技术上是
可能的,但是并不自然而然地把注意力引向重要的东西。在关系逻辑里重要的东西是与
类逻辑不同的东西。关于关系,我在哲学方面的意见有助于使我着重一种东西,这种东
西结果变得极为有用。
在那个时候,我几乎是只把关系认做是内包。我想到了这样一些句子:“x在y之
前”、“x大于y”、“x在y之北”。那时我觉得(我现在确是仍然觉得),虽然从
一种形式算法的观点来看我们可以把关系当做一套有序的偶,可是使这一套成为一个统
一体的只是内包。当然,类也是如此。使一个类成为一个统一体的只有那个为类中的各
项所共具、又为各项所特有的内包。凡是我们对付一个类,其中的项我们无法列举的时
候,上面所讲的道理是显而易见的。就无限的类来说,无法列举是很明显的,可是大多
数有限的类也正是如此。举例来说,谁能列举蠼螋这个类其中的各项呢?虽然如此,我
们还是可以说出一些关于一切蠼螋的命题来(或真或伪),我们之所以能够如此,乃是
由于使这个类所以能够成立的内包。以上所说各点也一样可以用于关系。关于时间上的
次序,我们有很多事情可说,因为我们懂得“在先”这个字的意思,虽然x在y之先这
样的x,y一切的偶我们是无法列举的。但是对于关系是偶的类这种见解还有一个反对
的议论:这些偶必须是有序的偶,那就是说,我们必须能够分别x,y这个偶和y,x
这个偶。若是不藉内包上的某种关系,这是做不到的。只要我们只限于类和宾辞,就不
可能解释次序,或把一个有序的偶和无序的一个两项的类加以区分。
所有这些都是我们在《数学原理》里所发展出来的关系算法的哲学背景。我们不得
不把各种概念用符号来表示,这些概念在以前是数理逻辑学家们没有弄得显著的。这些
概念中最重要的是:(1)由一些项而成的类,这些项对于一个既定的y项有R关系;
(2)由一些项而成的类,对于这些项一个既定的x项有R关系;(3)关系的“范围”,
这个范围是由一个类而成,这个类中所有的项对于某种什么东西有R关系;(4)R的
“相反范围”,这个范围是由一个类而成,某种什么东西对于这个类中所有的项有R关
系;(5)R的“领域”,这个领域是由上面所说的那种“范围”和“相反范围”而成;
(6)一种R关系的“反面”,这是x和y之间有R关系的时候,y和x之间所具的一
种关系;(7)R和S两种关系的“关系产物”,这是有一个y中项的时候,x和z之
间的一种关系,x对于y有R关系,y对于z有S关系;(8)复数,界说如下:有既
定的某a类,我们形成一个由若干项而成的类,所有这些项对于a的某项有R关系。我
们可以看一看人与人的关系来作以上各种概念的例子。举例来说,假定R是父母与子女
的关系。那么,(1)就是y的父母;(2)是x的子女;
(3)是所有那些有子女的人的类;(4)是所有那些有父母的人的类,那就是说,
除了亚当和夏娃以外,每人都包括在内;
(5)“父母”关系的领域包括每个人,他或是某人的父母,或是某人的子女;
(6)“的父母”这种关系的反面是“的子女”那么一种关系;(7)“祖父母”是父
母与父母的关系产物,“弟兄或ae?妹”是“子女”与“父母”的关系产物,“堂兄弟或
弟兄或ae?妹”是孙和祖父母的关系产物,余可以类推;
(8)“伊通学院学生的父母”是按这一个意义来说的复数。
不同种类的关系有不同种类的用处。我们可以先讲一种关系,这种关系产生一种东
西,我名之曰“叙述函项”。这是最多只有一项对于既定的一项所能有的一种关系。这
种关系产生用单数的“the”这个字的短语,如“the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -