⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_jn.c

📁 ecos实时嵌入式操作系统
💻 C
字号:
//===========================================================================////      e_jn.c////      Part of the standard mathematical function library////===========================================================================//####ECOSGPLCOPYRIGHTBEGIN####// -------------------------------------------// This file is part of eCos, the Embedded Configurable Operating System.// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.//// eCos is free software; you can redistribute it and/or modify it under// the terms of the GNU General Public License as published by the Free// Software Foundation; either version 2 or (at your option) any later version.//// eCos is distributed in the hope that it will be useful, but WITHOUT ANY// WARRANTY; without even the implied warranty of MERCHANTABILITY or// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License// for more details.//// You should have received a copy of the GNU General Public License along// with eCos; if not, write to the Free Software Foundation, Inc.,// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.//// As a special exception, if other files instantiate templates or use macros// or inline functions from this file, or you compile this file and link it// with other works to produce a work based on this file, this file does not// by itself cause the resulting work to be covered by the GNU General Public// License. However the source code for this file must still be made available// in accordance with section (3) of the GNU General Public License.//// This exception does not invalidate any other reasons why a work based on// this file might be covered by the GNU General Public License.//// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.// at http://sources.redhat.com/ecos/ecos-license/// -------------------------------------------//####ECOSGPLCOPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)e_jn.c 1.4 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* * __ieee754_jn(n, x), __ieee754_yn(n, x) * floating point Bessel's function of the 1st and 2nd kind * of order n *           * Special cases: *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. * Note 2. About jn(n,x), yn(n,x) *      For n=0, j0(x) is called, *      for n=1, j1(x) is called, *      for n<x, forward recursion us used starting *      from values of j0(x) and j1(x). *      for n>x, a continued fraction approximation to *      j(n,x)/j(n-1,x) is evaluated and then backward *      recursion is used starting from a supposed value *      for j(n,x). The resulting value of j(0,x) is *      compared with the actual value to correct the *      supposed value of j(n,x). * *      yn(n,x) is similar in all respects, except *      that forward recursion is used for all *      values of n>1. *       */#include "mathincl/fdlibm.h"static const doubleinvsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */static double zero  =  0.00000000000000000000e+00;        double __ieee754_jn(int n, double x){        int i,hx,ix,lx, sgn;        double a, b, temp, di;        double z, w;    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)     * Thus, J(-n,x) = J(n,-x)     */        hx = CYG_LIBM_HI(x);        ix = 0x7fffffff&hx;        lx = CYG_LIBM_LO(x);    /* if J(n,NaN) is NaN */        if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;        if(n<0){                                n = -n;                x = -x;                hx ^= 0x80000000;        }        if(n==0) return(__ieee754_j0(x));        if(n==1) return(__ieee754_j1(x));        sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */        x = fabs(x);        if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */            b = zero;        else if((double)n<=x) {                   /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */            if(ix>=0x52D00000) { /* x > 2**302 */    /* (x >> n**2)      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *      Let s=sin(x), c=cos(x),      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then     *     *             n    sin(xn)*sqt2    cos(xn)*sqt2     *          ----------------------------------     *             0     s-c             c+s     *             1    -s-c            -c+s     *             2    -s+c            -c-s     *             3     s+c             c-s     */                switch(n&3) {                    case 0: temp =  cos(x)+sin(x); break;                    case 1: temp = -cos(x)+sin(x); break;                    case 2: temp = -cos(x)-sin(x); break;                    case 3: temp =  cos(x)-sin(x); break;                    default: temp = 0.0; break; /* not used - purely to                                                  * placate compiler */                }                b = invsqrtpi*temp/sqrt(x);            } else {                    a = __ieee754_j0(x);                b = __ieee754_j1(x);                for(i=1;i<n;i++){                    temp = b;                    b = b*((double)(i+i)/x) - a; /* avoid underflow */                    a = temp;                }            }        } else {            if(ix<0x3e100000) { /* x < 2**-29 */    /* x is tiny, return the first Taylor expansion of J(n,x)      * J(n,x) = 1/n!*(x/2)^n  - ...     */                if(n>33)        /* underflow */                    b = zero;                else {                    temp = x*0.5; b = temp;                    for (a=one,i=2;i<=n;i++) {                        a *= (double)i;         /* a = n! */                        b *= temp;              /* b = (x/2)^n */                    }                    b = b/a;                }            } else {                /* use backward recurrence */                /*                      x      x^2      x^2                        *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....                 *                      2n  - 2(n+1) - 2(n+2)                 *                 *                      1      1        1                        *  (for large x)   =  ----  ------   ------   .....                 *                      2n   2(n+1)   2(n+2)                 *                      -- - ------ - ------ -                  *                       x     x         x                 *                 * Let w = 2n/x and h=2/x, then the above quotient                 * is equal to the continued fraction:                 *                  1                 *      = -----------------------                 *                     1                 *         w - -----------------                 *                        1                 *              w+h - ---------                 *                     w+2h - ...                 *                 * To determine how many terms needed, let                 * Q(0) = w, Q(1) = w(w+h) - 1,                 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),                 * When Q(k) > 1e4      good for single                  * When Q(k) > 1e9      good for double                  * When Q(k) > 1e17     good for quadruple                  */            /* determine k */                double t,v;                double q0,q1,h,tmp; int k,m;                w  = (n+n)/(double)x; h = 2.0/(double)x;                q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;                while(q1<1.0e9) {                        k += 1; z += h;                        tmp = z*q1 - q0;                        q0 = q1;                        q1 = tmp;                }                m = n+n;                for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);                a = t;                b = one;                /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)                 *  Hence, if n*(log(2n/x)) > ...                 *  single 8.8722839355e+01                 *  double 7.09782712893383973096e+02                 *  long double 1.1356523406294143949491931077970765006170e+04                 *  then recurrent value may overflow and the result is                  *  likely underflow to zero                 */                tmp = n;                v = two/x;                tmp = tmp*__ieee754_log(fabs(v*tmp));                if(tmp<7.09782712893383973096e+02) {                    for(i=n-1,di=(double)(i+i);i>0;i--){                        temp = b;                        b *= di;                        b  = b/x - a;                        a = temp;                        di -= two;                    }                } else {                    for(i=n-1,di=(double)(i+i);i>0;i--){                        temp = b;                        b *= di;                        b  = b/x - a;                        a = temp;                        di -= two;                    /* scale b to avoid spurious overflow */                        if(b>1e100) {                            a /= b;                            t /= b;                            b  = one;                        }                    }                }                b = (t*__ieee754_j0(x)/b);            }        }        if(sgn==1) return -b; else return b;}        double __ieee754_yn(int n, double x) {        int i,hx,ix,lx;        int sign;        double a, b, temp;        hx = CYG_LIBM_HI(x);        ix = 0x7fffffff&hx;        lx = CYG_LIBM_LO(x);    /* if Y(n,NaN) is NaN */        if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;        if((ix|lx)==0) return -one/zero;        if(hx<0) return zero/zero;        sign = 1;        if(n<0){                n = -n;                sign = 1 - ((n&1)<<1);        }        if(n==0) return(__ieee754_y0(x));        if(n==1) return(sign*__ieee754_y1(x));        if(ix==0x7ff00000) return zero;        if(ix>=0x52D00000) { /* x > 2**302 */    /* (x >> n**2)      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *      Let s=sin(x), c=cos(x),      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then     *     *             n    sin(xn)*sqt2    cos(xn)*sqt2     *          ----------------------------------     *             0     s-c             c+s     *             1    -s-c            -c+s     *             2    -s+c            -c-s     *             3     s+c             c-s     */                switch(n&3) {                    case 0: temp =  sin(x)-cos(x); break;                    case 1: temp = -sin(x)-cos(x); break;                    case 2: temp = -sin(x)+cos(x); break;                    case 3: temp =  sin(x)+cos(x); break;                    default: temp = 0.0; break; /* not used - purely to                                                  * placate compiler */                }                b = invsqrtpi*temp/sqrt(x);        } else {            a = __ieee754_y0(x);            b = __ieee754_y1(x);        /* quit if b is -inf */            for(i=1;i<n&&((unsigned)CYG_LIBM_HI(b) != 0xfff00000);i++){                 temp = b;                b = ((double)(i+i)/x)*b - a;                a = temp;            }        }        if(sign>0) return b; else return -b;}#endif // ifdef CYGPKG_LIBM     // EOF e_jn.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -