⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_j0.c

📁 ecos实时嵌入式操作系统
💻 C
📖 第 1 页 / 共 2 页
字号:
//===========================================================================////      e_j0.c////      Part of the standard mathematical function library////===========================================================================//####ECOSGPLCOPYRIGHTBEGIN####// -------------------------------------------// This file is part of eCos, the Embedded Configurable Operating System.// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.//// eCos is free software; you can redistribute it and/or modify it under// the terms of the GNU General Public License as published by the Free// Software Foundation; either version 2 or (at your option) any later version.//// eCos is distributed in the hope that it will be useful, but WITHOUT ANY// WARRANTY; without even the implied warranty of MERCHANTABILITY or// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License// for more details.//// You should have received a copy of the GNU General Public License along// with eCos; if not, write to the Free Software Foundation, Inc.,// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.//// As a special exception, if other files instantiate templates or use macros// or inline functions from this file, or you compile this file and link it// with other works to produce a work based on this file, this file does not// by itself cause the resulting work to be covered by the GNU General Public// License. However the source code for this file must still be made available// in accordance with section (3) of the GNU General Public License.//// This exception does not invalidate any other reasons why a work based on// this file might be covered by the GNU General Public License.//// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.// at http://sources.redhat.com/ecos/ecos-license/// -------------------------------------------//####ECOSGPLCOPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)e_j0.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __ieee754_j0(x), __ieee754_y0(x) * Bessel function of the first and second kinds of order zero. * Method -- j0(x): *      1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... *      2. Reduce x to |x| since j0(x)=j0(-x),  and *         for x in (0,2) *              j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x; *         (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) *         for x in (2,inf) *              j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) *         as follow: *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) *                      = 1/sqrt(2) * (cos(x) + sin(x)) *              sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) *                      = 1/sqrt(2) * (sin(x) - cos(x)) *         (To avoid cancellation, use *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) *          to compute the worse one.) *          *      3 Special cases *              j0(nan)= nan *              j0(0) = 1 *              j0(inf) = 0 *               * Method -- y0(x): *      1. For x<2. *         Since  *              y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) *         therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. *         We use the following function to approximate y0, *              y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 *         where  *              U(z) = u00 + u01*z + ... + u06*z^6 *              V(z) = 1  + v01*z + ... + v04*z^4 *         with absolute approximation error bounded by 2**-72. *         Note: For tiny x, U/V = u0 and j0(x)~1, hence *              y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) *      2. For x>=2. *              y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) *         by the method mentioned above. *      3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. */#include "mathincl/fdlibm.h"static double pzero(double), qzero(double);static const double huge    = 1e300,one     = 1.0,invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */                /* R0/S0 on [0, 2.00] */R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */R05  = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */S01  =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */S02  =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */S03  =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */S04  =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */static double zero = 0.0;        double __ieee754_j0(double x) {        double z, s,c,ss,cc,r,u,v;        int hx,ix;        hx = CYG_LIBM_HI(x);        ix = hx&0x7fffffff;        if(ix>=0x7ff00000) return one/(x*x);        x = fabs(x);        if(ix >= 0x40000000) {  /* |x| >= 2.0 */                s = sin(x);                c = cos(x);                ss = s-c;                cc = s+c;                if(ix<0x7fe00000) {  /* make sure x+x not overflow */                    z = -cos(x+x);                    if ((s*c)<zero) cc = z/ss;                    else            ss = z/cc;                }        /*         * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)         * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)         */                if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);                else {                    u = pzero(x); v = qzero(x);                    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);                }                return z;        }        if(ix<0x3f200000) {     /* |x| < 2**-13 */            if(huge+x>one) {    /* raise inexact if x != 0 */                if(ix<0x3e400000) return one;   /* |x|<2**-27 */                else          return one - 0.25*x*x;            }        }        z = x*x;        r =  z*(R02+z*(R03+z*(R04+z*R05)));        s =  one+z*(S01+z*(S02+z*(S03+z*S04)));        if(ix < 0x3FF00000) {   /* |x| < 1.00 */            return one + z*(-0.25+(r/s));        } else {            u = 0.5*x;            return((one+u)*(one-u)+z*(r/s));        }}static const doubleu00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */        double __ieee754_y0(double x) {        double z, s,c,ss,cc,u,v;        int hx,ix,lx;        hx = CYG_LIBM_HI(x);        ix = 0x7fffffff&hx;        lx = CYG_LIBM_LO(x);    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */        if(ix>=0x7ff00000) return  one/(x+x*x);         if((ix|lx)==0) return -one/zero;        if(hx<0) return zero/zero;        if(ix >= 0x40000000) {  /* |x| >= 2.0 */        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))         * where x0 = x-pi/4         *      Better formula:         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)         *                      =  1/sqrt(2) * (sin(x) + cos(x))         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)         *                      =  1/sqrt(2) * (sin(x) - cos(x))

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -