⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_erf.c

📁 ecos实时嵌入式操作系统
💻 C
字号:
//===========================================================================////      s_erf.c////      Part of the standard mathematical function library////===========================================================================//####ECOSGPLCOPYRIGHTBEGIN####// -------------------------------------------// This file is part of eCos, the Embedded Configurable Operating System.// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.//// eCos is free software; you can redistribute it and/or modify it under// the terms of the GNU General Public License as published by the Free// Software Foundation; either version 2 or (at your option) any later version.//// eCos is distributed in the hope that it will be useful, but WITHOUT ANY// WARRANTY; without even the implied warranty of MERCHANTABILITY or// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License// for more details.//// You should have received a copy of the GNU General Public License along// with eCos; if not, write to the Free Software Foundation, Inc.,// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.//// As a special exception, if other files instantiate templates or use macros// or inline functions from this file, or you compile this file and link it// with other works to produce a work based on this file, this file does not// by itself cause the resulting work to be covered by the GNU General Public// License. However the source code for this file must still be made available// in accordance with section (3) of the GNU General Public License.//// This exception does not invalidate any other reasons why a work based on// this file might be covered by the GNU General Public License.//// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.// at http://sources.redhat.com/ecos/ecos-license/// -------------------------------------------//####ECOSGPLCOPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)s_erf.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* double erf(double x) * double erfc(double x) *                           x *                    2      |\ *     erf(x)  =  ---------  | exp(-t*t)dt *                 sqrt(pi) \|  *                           0 * *     erfc(x) =  1-erf(x) *  Note that  *              erf(-x) = -erf(x) *              erfc(-x) = 2 - erfc(x) * * Method: *      1. For |x| in [0, 0.84375] *          erf(x)  = x + x*R(x^2) *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25] *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375] *         where R = P/Q where P is an odd poly of degree 8 and *         Q is an odd poly of degree 10. *                                               -57.90 *                      | R - (erf(x)-x)/x | <= 2 *       * *         Remark. The formula is derived by noting *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) *         and that *          2/sqrt(pi) = 1.128379167095512573896158903121545171688 *         is close to one. The interval is chosen because the fix *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is *         near 0.6174), and by some experiment, 0.84375 is chosen to *         guarantee the error is less than one ulp for erf. * *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and *         c = 0.84506291151 rounded to single (24 bits) *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s)) *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0 *                        1+(c+P1(s)/Q1(s))    if x < 0 *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 *         Remark: here we use the taylor series expansion at x=1. *              erf(1+s) = erf(1) + s*Poly(s) *                       = 0.845.. + P1(s)/Q1(s) *         That is, we use rational approximation to approximate *                      erf(1+s) - (c = (single)0.84506291151) *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] *         where  *              P1(s) = degree 6 poly in s *              Q1(s) = degree 6 poly in s * *      3. For x in [1.25,1/0.35(~2.857143)],  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) *              erf(x)  = 1 - erfc(x) *         where  *              R1(z) = degree 7 poly in z, (z=1/x^2) *              S1(z) = degree 8 poly in z * *      4. For x in [1/0.35,28] *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 *                      = 2.0 - tiny            (if x <= -6) *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else *              erf(x)  = sign(x)*(1.0 - tiny) *         where *              R2(z) = degree 6 poly in z, (z=1/x^2) *              S2(z) = degree 7 poly in z * *      Note1: *         To compute exp(-x*x-0.5625+R/S), let s be a single *         precision number and s := x; then *              -x*x = -s*s + (s-x)*(s+x) *              exp(-x*x-0.5626+R/S) =  *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); *      Note2: *         Here 4 and 5 make use of the asymptotic series *                        exp(-x*x) *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) *                        x*sqrt(pi) *         We use rational approximation to approximate *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 *         Here is the error bound for R1/S1 and R2/S2 *              |R1/S1 - f(x)|  < 2**(-62.57) *              |R2/S2 - f(x)|  < 2**(-61.52) * *      5. For inf > x >= 28 *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact) *              erfc(x) = tiny*tiny (raise underflow) if x > 0 *                      = 2 - tiny if x<0 * *      7. Special case: *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1, *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,  *              erfc/erf(NaN) is NaN */#include "mathincl/fdlibm.h"static const doubletiny        = 1e-300,half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */        /* c = (float)0.84506291151 */erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 *//* * Coefficients for approximation to  erf on [0,0.84375] */efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 *//* * Coefficients for approximation to  erf  in [0.84375,1.25]  */pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D *//* * Coefficients for approximation to  erfc in [1.25,1/0.35] */ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 *//* * Coefficients for approximation to  erfc in [1/.35,28] */rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */        double erf(double x) {        int hx,ix,i;        double R,S,P,Q,s,y,z,r;        hx = CYG_LIBM_HI(x);        ix = hx&0x7fffffff;        if(ix>=0x7ff00000) {            /* erf(nan)=nan */            i = ((unsigned)hx>>31)<<1;            return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */        }        if(ix < 0x3feb0000) {           /* |x|<0.84375 */            if(ix < 0x3e300000) {       /* |x|<2**-28 */                if (ix < 0x00800000)                     return 0.125*(8.0*x+efx8*x);  /*avoid underflow */                return x + efx*x;            }            z = x*x;            r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));            s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));            y = r/s;            return x + x*y;        }        if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */            s = fabs(x)-one;            P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));            Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));            if(hx>=0) return erx + P/Q; else return -erx - P/Q;        }        if (ix >= 0x40180000) {         /* inf>|x|>=6 */            if(hx>=0) return one-tiny; else return tiny-one;        }        x = fabs(x);        s = one/(x*x);        if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */            R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(                                ra5+s*(ra6+s*ra7))))));            S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(                                sa5+s*(sa6+s*(sa7+s*sa8)))))));        } else {        /* |x| >= 1/0.35 */            R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(                                rb5+s*rb6)))));            S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(                                sb5+s*(sb6+s*sb7))))));        }        z  = x;          CYG_LIBM_LO(z) = 0;        r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);        if(hx>=0) return one-r/x; else return  r/x-one;}        double erfc(double x) {        int hx,ix;        double R,S,P,Q,s,y,z,r;        hx = CYG_LIBM_HI(x);        ix = hx&0x7fffffff;        if(ix>=0x7ff00000) {                    /* erfc(nan)=nan */                                                /* erfc(+-inf)=0,2 */            return (double)(((unsigned)hx>>31)<<1)+one/x;        }        if(ix < 0x3feb0000) {           /* |x|<0.84375 */            if(ix < 0x3c700000)         /* |x|<2**-56 */                return one-x;            z = x*x;            r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));            s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));            y = r/s;            if(hx < 0x3fd00000) {       /* x<1/4 */                return one-(x+x*y);            } else {                r = x*y;                r += (x-half);                return half - r ;            }        }        if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */            s = fabs(x)-one;            P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));            Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));            if(hx>=0) {                z  = one-erx; return z - P/Q;             } else {                z = erx+P/Q; return one+z;            }        }        if (ix < 0x403c0000) {          /* |x|<28 */            x = fabs(x);            s = one/(x*x);            if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/                R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(                                ra5+s*(ra6+s*ra7))))));                S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(                                sa5+s*(sa6+s*(sa7+s*sa8)))))));            } else {                    /* |x| >= 1/.35 ~ 2.857143 */                if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */                R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(                                rb5+s*rb6)))));                S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(                                sb5+s*(sb6+s*sb7))))));            }            z  = x;            CYG_LIBM_LO(z)  = 0;            r  =  __ieee754_exp(-z*z-0.5625)*                        __ieee754_exp((z-x)*(z+x)+R/S);            if(hx>0) return r/x; else return two-r/x;        } else {            if(hx>0) return tiny*tiny; else return two-tiny;        }}#endif // ifdef CYGPKG_LIBM     // EOF s_erf.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -