⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_log1p.c

📁 ecos实时嵌入式操作系统
💻 C
字号:
//===========================================================================////      s_log1p.c////      Part of the standard mathematical function library////===========================================================================//####ECOSGPLCOPYRIGHTBEGIN####// -------------------------------------------// This file is part of eCos, the Embedded Configurable Operating System.// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.//// eCos is free software; you can redistribute it and/or modify it under// the terms of the GNU General Public License as published by the Free// Software Foundation; either version 2 or (at your option) any later version.//// eCos is distributed in the hope that it will be useful, but WITHOUT ANY// WARRANTY; without even the implied warranty of MERCHANTABILITY or// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License// for more details.//// You should have received a copy of the GNU General Public License along// with eCos; if not, write to the Free Software Foundation, Inc.,// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.//// As a special exception, if other files instantiate templates or use macros// or inline functions from this file, or you compile this file and link it// with other works to produce a work based on this file, this file does not// by itself cause the resulting work to be covered by the GNU General Public// License. However the source code for this file must still be made available// in accordance with section (3) of the GNU General Public License.//// This exception does not invalidate any other reasons why a work based on// this file might be covered by the GNU General Public License.//// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.// at http://sources.redhat.com/ecos/ecos-license/// -------------------------------------------//####ECOSGPLCOPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)s_log1p.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* double log1p(double x) * * Method :                   *   1. Argument Reduction: find k and f such that  *                      1+x = 2^k * (1+f),  *         where  sqrt(2)/2 < 1+f < sqrt(2) . * *      Note. If k=0, then f=x is exact. However, if k!=0, then f *      may not be representable exactly. In that case, a correction *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), *      and add back the correction term c/u. *      (Note: when x > 2**53, one can simply return log(x)) * *   2. Approximation of log1p(f). *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) *               = 2s + 2/3 s**3 + 2/5 s**5 + ....., *               = 2s + s*R *      We use a special Reme algorithm on [0,0.1716] to generate  *      a polynomial of degree 14 to approximate R The maximum error  *      of this polynomial approximation is bounded by 2**-58.45. In *      other words, *                      2      4      6      8      10      12      14 *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s *      (the values of Lp1 to Lp7 are listed in the program) *      and *          |      2          14          |     -58.45 *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2  *          |                             | *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. *      In order to guarantee error in log below 1ulp, we compute log *      by *              log1p(f) = f - (hfsq - s*(hfsq+R)). *       *      3. Finally, log1p(x) = k*ln2 + log1p(f).   *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) *         Here ln2 is split into two floating point number:  *                      ln2_hi + ln2_lo, *         where n*ln2_hi is always exact for |n| < 2000. * * Special cases: *      log1p(x) is NaN with signal if x < -1 (including -INF) ;  *      log1p(+INF) is +INF; log1p(-1) is -INF with signal; *      log1p(NaN) is that NaN with no signal. * * Accuracy: *      according to an error analysis, the error is always less than *      1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough  * to produce the hexadecimal values shown. * * Note: Assuming log() return accurate answer, the following *       algorithm can be used to compute log1p(x) to within a few ULP: *       *              u = 1+x; *              if(u==1.0) return x ; else *                         return log(u)*(x/(u-1.0)); * *       See HP-15C Advanced Functions Handbook, p.193. */#include "mathincl/fdlibm.h"static const doubleln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */static double zero = 0.0;        double log1p(double x){        double hfsq,f,c,s,z,R,u;        int k,hx,hu,ax;        c=f=hu=0.0; /* to placate compiler */        hx = CYG_LIBM_HI(x);            /* high word of x */        ax = hx&0x7fffffff;        k = 1;        if (hx < 0x3FDA827A) {                  /* x < 0.41422  */            if(ax>=0x3ff00000) {                /* x <= -1.0 */                if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */                else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */            }            if(ax<0x3e200000) {                 /* |x| < 2**-29 */                if(two54+x>zero                 /* raise inexact */                    &&ax<0x3c900000)            /* |x| < 2**-54 */                    return x;                else                    return x - x*x*0.5;            }            if(hx>0||hx<=((int)0xbfd2bec3)) {                k=0;f=x;hu=1;}  /* -0.2929<x<0.41422 */        }         if (hx >= 0x7ff00000) return x+x;        if(k!=0) {            if(hx<0x43400000) {                u  = 1.0+x;                 hu = CYG_LIBM_HI(u);            /* high word of u */                k  = (hu>>20)-1023;                c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */                c /= u;            } else {                u  = x;                hu = CYG_LIBM_HI(u);            /* high word of u */                k  = (hu>>20)-1023;                c  = 0;            }            hu &= 0x000fffff;            if(hu<0x6a09e) {                CYG_LIBM_HI(u) = hu|0x3ff00000; /* normalize u */            } else {                k += 1;                 CYG_LIBM_HI(u) = hu|0x3fe00000; /* normalize u/2 */                hu = (0x00100000-hu)>>2;            }            f = u-1.0;        }        hfsq=0.5*f*f;        if(hu==0) {     /* |f| < 2**-20 */            if(f==zero) {                if(k==0) return zero;                  else {                    c += k*ln2_lo; return k*ln2_hi+c;                }            }            R = hfsq*(1.0-0.66666666666666666*f);            if(k==0) return f-R;             else return k*ln2_hi-((R-(k*ln2_lo+c))-f);        }        s = f/(2.0+f);         z = s*s;        R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));        if(k==0) return f-(hfsq-s*(hfsq+R));        else return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);}#endif // ifdef CYGPKG_LIBM     // EOF s_log1p.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -