📄 rfc3060.txt
字号:
The individual role names in a role combination must appear in alphabetical order (according to the collating sequence for UCS-2 characters), to make the string matches work correctly. The role names used in an environment are specified by the policy administrator.5.3. Local Time and UTC Time in PolicyTimePeriodConditions An instance of PolicyTimePeriodCondition has up to five properties that represent times: TimePeriod, MonthOfYearMask, DayOfMonthMask, DayOfWeekMask, and TimeOfDayMask. All of the time-related properties in an instance of PolicyTimePeriodCondition represent one of two types of times: local time at the place where a policy rule is applied, or UTC time. The property LocalOrUtcTime indicates which time representation applies to an instance of PolicyTimePeriodCondition. Since the PCIM provides only for local time and UTC time, a Policy Management Tool that provides for other time representations (for example, a fixed time at a particular location) will need to map from these other representations to either local time or UTC time. An example will illustrate the nature of this mapping. Suppose a policy rule is tied to the hours of operation for a Help Desk: 0800 to 2000 Monday through Friday [US] Eastern Time. In order to express these times in PolicyTimePeriodCondition, a management tool must convert them to UTC times. (They are not local times, because they refer to a single time interval worldwide, not to intervals tied to the local clocks at the locations where theMoore, et al. Standards Track [Page 21]RFC 3060 Policy Core Information Model February 2001 PolicyRule is being applied.) As reference [10] points out, mapping from [US] Eastern Time to UTC time is not simply a matter of applying an offset: the offset between [US] Eastern Time and UTC time switches between -0500 and -0400 depending on whether Daylight Savings Time is in effect in the US. Suppose the policy administrator's goal is to have a policy rule be valid from 0800 until 1200 [US] Eastern Time on every Monday, within the overall time period from the beginning of 2000 until the end of 2001. The Policy Management Tool could either be configured with the definition of what [US] Eastern Time means, or it could be configured with knowledge of where to go to get this information. Reference [10] contains further discussion of time zone definitions and where they might reside. Armed with knowledge about [US] Eastern Time, the Policy Management Tool would create however many instances of PolicyTimePeriodCondition it needed to represent the desired intervals. Note that while there is an increased number of PolicyTimePeriodCondition instances, there is still just one PolicyRule, which is tied to all the PolicyTimePeriodCondition instances via the aggregation PolicyRuleValidityPeriod. Here are the first two of these instances: 1. TimePeriod: 20000101T050000/20000402T070000 DayOfWeekMask: { Monday } TimeOfDayMask: T130000/T170000 LocalOrUtcTime: UTC 2. TimePeriod: 20000402T070000/20001029T070000 DayOfWeekMask: { Monday } TimeOfDayMask: T120000/T160000 LocalOrUtcTime: UTC There would be three more similar instances, for winter 2000-2001, summer 2001, and winter 2001 up through December 31. Had the example been chosen differently, there could have been even more instances of PolicyTimePeriodCondition. If, for example, the time interval had been from 0800 - 2200 [US] Eastern Time on Mondays, instance 1 above would have split into two instances: one with a UTC time interval of T130000/T240000 on Mondays, and another with a UTC time interval of T000000/T030000 on Tuesdays. So the end result would have been ten instances of PolicyTimePeriodCondition, not five. By restricting PolicyTimePeriodCondition to local time and UTC time, the PCIM places the difficult and expensive task of mapping from "human" time representations to machine-friendly ones in the PolicyMoore, et al. Standards Track [Page 22]RFC 3060 Policy Core Information Model February 2001 Management Tool. Another approach would have been to place in PolicyTimePeriodCondition a means of representing a named time zone, such as [US] Eastern Time. This, however, would have passed the difficult mapping responsibility down to the PDPs and PEPs. It is better to have a mapping such as the one described above done once in a Policy Management Tool, rather than having it done over and over in each of the PDPs (and possibly PEPs) that need to apply a PolicyRule.5.4. CIM Data Types Since PCIM extends the CIM Schema, a correspondence between data types used in both CIM and PCIM is needed. The following CIM data types are used in the class definitions that follow in Sections 6 and 7: o uint8 unsigned 8-bit integer o uint16 unsigned 16-bit integer o boolean Boolean o string UCS-2 string. Strings in CIM are stored as UCS-2 characters, where each character is encoded in two octets. Thus string values may need to be converted when moving between a CIM environment and one that uses a different string encoding. For example, in an LDAP-accessible directory, attributes of type DirectoryString are stored in UTF-8 format. RFC 2279 [7] explains how to convert between these two formats. When it is applied to a CIM string, a MaxLen value refers to the maximum number of characters in the string, rather than to the maximum number of octets. In addition to the CIM data types listed above, the association classes in Section 7 use the following type: o <classname> ref strongly typed reference. There is one obvious omission from this list of CIM data types: octet strings. This is because CIM treats octet strings as a derived data type. There are two forms of octet strings in CIM - an ordered uint8 array for single-valued strings, and a string array for multi- valued properties. Both are described by adding an "OctetString" qualifier (meta-data) to the property. This qualifier functions exactly like an SMIv2 (SNMP) Textual Convention, refining the syntax and semantics of the existing CIM data type.Moore, et al. Standards Track [Page 23]RFC 3060 Policy Core Information Model February 2001 The first four numeric elements of both of the "OctetString" representations are a length field. (The reason that the "numeric" adjective is added to the previous sentence is that the string property also includes '0' and 'x', as its first characters.) In both cases, these 4 numeric elements (octets) are included in calculating the length. For example, a single-valued octet string property having the value X'7C' would be represented by the uint8 array, X'00 00 00 05 7C'. The strings representing the individual values of a multi-valued property qualified with the "OctetString" qualifier are constructed similarly: 1. Take a value to be encoded as an octet string (we'll use X'7C' as above), and prepend to it a four-octet length. The result is the same, X'00 00 00 05 7C'. 2. Convert this to a character string by introducing '0' and 'x' at the front, and removing all white space. Thus we have the 12- character string "0x000000057C". This string is the value of one of the array elements in the CIM string array. Since CIM uses the UCS-2 character set, it will require 24 octets to encode this 12- character string. Mappings of the PCIM to particular data models are not required to follow this CIM technique of representing multi-valued octet strings as length- prefixed character strings. In an LDAP mapping, for example, it would be much more natural to simply use the Octet String syntax, and omit the prepended length octets.5.5. Comparison between CIM and LDAP Class Specifications There are a number of differences between CIM and LDAP class specifications. The ones that are relevant to the abbreviated class specifications in this document are listed below. These items are included here to help introduce the IETF community, which is already familiar with LDAP, to CIM modeling, and by extension, to information modeling in general. o Instead of LDAP's three class types (abstract, auxiliary, structural), CIM has only two: abstract and instantiable. The type of a CIM class is indicated by the Boolean qualifier ABSTRACT. o CIM uses the term "property" for what LDAP terms an "attribute".Moore, et al. Standards Track [Page 24]RFC 3060 Policy Core Information Model February 2001 o CIM uses the array notation "[ ]" to indicate that a property is multi-valued. CIM defines three types of arrays: bags (contents are unordered, duplicates allowed), ordered bags (contents are ordered but duplicates are allowed) and indexed arrays (contents are ordered and no duplicates are allowed). o CIM classes and properties are identified by name, not by OID. o CIM classes use a different naming scheme for native implementations, than LDAP. The CIM naming scheme is documented in Appendix A since it is not critical to understanding the information model, and only applies when communicating with a native CIM implementation. o In LDAP, attribute definitions are global, and the same attribute may appear in multiple classes. In CIM, a property is defined within the scope of a single class definition. The property may be inherited into subclasses of the class in which it is defined, but otherwise it cannot appear in other classes. One side effect of this difference is that CIM property names tend to be much shorter than LDAP attribute names, since they are implicitly scoped by the name of the class in which they are defined. There is also a notational convention that this document follows, to improve readability. In CIM, all class and property names are prefixed with the characters "CIM_". These prefixes have been omitted throughout this document, with one exception regarding naming, documented in Appendix A. For the complete definition of the CIM specification language, see reference [2].6. Class Definitions The following sections contain the definitions of the PCIM classes.6.1. The Abstract Class "Policy" The abstract class Policy collects several properties that may be included in instances of any of the Core Policy classes (or their subclasses). For convenience, the two properties that Policy inherits from ManagedElement in the CIM schema are shown here as well.Moore, et al. Standards Track [Page 25]RFC 3060 Policy Core Information Model February 2001 The class definition is as follows: NAME Policy DESCRIPTION An abstract class with four properties for describing a policy-related instance. DERIVED FROM ManagedElement ABSTRACT TRUE PROPERTIES CommonName (CN) PolicyKeywords[ ] // Caption (inherited) // Description (inherited)6.1.1. The Property "CommonName (CN)" The CN, or CommonName, property corresponds to the X.500 attribute commonName (cn). In X.500 this property specifies one or more user- friendly names (typically only one name) by which an object is commonly known, names that conform to the naming conventions of the country or culture with which the object is associated. In the CIM model, however, the CommonName property is single-valued. NAME CN DESCRIPTION A user-friendly name of a policy-related object
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -