📄 rfc3031.txt
字号:
MPLS stands for "Multiprotocol" Label Switching, multiprotocol because its techniques are applicable to ANY network layer protocol. In this document, however, we focus on the use of IP as the network layer protocol. A router which supports MPLS is known as a "Label Switching Router", or LSR.2.2. Terminology This section gives a general conceptual overview of the terms used in this document. Some of these terms are more precisely defined in later sections of the document. DLCI a label used in Frame Relay networks to identify frame relay circuits forwarding equivalence class a group of IP packets which are forwarded in the same manner (e.g., over the same path, with the same forwarding treatment) frame merge label merging, when it is applied to operation over frame based media, so that the potential problem of cell interleave is not an issue. label a short fixed length physically contiguous identifier which is used to identify a FEC, usually of local significance. label merging the replacement of multiple incoming labels for a particular FEC with a single outgoing label label swap the basic forwarding operation consisting of looking up an incoming label to determine the outgoing label, encapsulation, port, and other data handling information. label swapping a forwarding paradigm allowing streamlined forwarding of data by using labels to identify classes of data packets which are treated indistinguishably when forwarding.Rosen, et al. Standards Track [Page 6]RFC 3031 MPLS Architecture January 2001 label switched hop the hop between two MPLS nodes, on which forwarding is done using labels. label switched path The path through one or more LSRs at one level of the hierarchy followed by a packets in a particular FEC. label switching router an MPLS node which is capable of forwarding native L3 packets layer 2 the protocol layer under layer 3 (which therefore offers the services used by layer 3). Forwarding, when done by the swapping of short fixed length labels, occurs at layer 2 regardless of whether the label being examined is an ATM VPI/VCI, a frame relay DLCI, or an MPLS label. layer 3 the protocol layer at which IP and its associated routing protocols operate link layer synonymous with layer 2 loop detection a method of dealing with loops in which loops are allowed to be set up, and data may be transmitted over the loop, but the loop is later detected loop prevention a method of dealing with loops in which data is never transmitted over a loop label stack an ordered set of labels merge point a node at which label merging is done MPLS domain a contiguous set of nodes which operate MPLS routing and forwarding and which are also in one Routing or Administrative Domain MPLS edge node an MPLS node that connects an MPLS domain with a node which is outside of the domain, either because it does not run MPLS, and/or because it is in a different domain. Note that if an LSR has a neighboring host which is not running MPLS, that that LSR is an MPLS edge node.Rosen, et al. Standards Track [Page 7]RFC 3031 MPLS Architecture January 2001 MPLS egress node an MPLS edge node in its role in handling traffic as it leaves an MPLS domain MPLS ingress node an MPLS edge node in its role in handling traffic as it enters an MPLS domain MPLS label a label which is carried in a packet header, and which represents the packet's FEC MPLS node a node which is running MPLS. An MPLS node will be aware of MPLS control protocols, will operate one or more L3 routing protocols, and will be capable of forwarding packets based on labels. An MPLS node may optionally be also capable of forwarding native L3 packets. MultiProtocol Label Switching an IETF working group and the effort associated with the working group network layer synonymous with layer 3 stack synonymous with label stack switched path synonymous with label switched path virtual circuit a circuit used by a connection-oriented layer 2 technology such as ATM or Frame Relay, requiring the maintenance of state information in layer 2 switches. VC merge label merging where the MPLS label is carried in the ATM VCI field (or combined VPI/VCI field), so as to allow multiple VCs to merge into one single VC VP merge label merging where the MPLS label is carried din the ATM VPI field, so as to allow multiple VPs to be merged into one single VP. In this case two cells would have the same VCI value only if they originated from the same node. This allows cells from different sources to be distinguished via the VCI.Rosen, et al. Standards Track [Page 8]RFC 3031 MPLS Architecture January 2001 VPI/VCI a label used in ATM networks to identify circuits2.3. Acronyms and Abbreviations ATM Asynchronous Transfer Mode BGP Border Gateway Protocol DLCI Data Link Circuit Identifier FEC Forwarding Equivalence Class FTN FEC to NHLFE Map IGP Interior Gateway Protocol ILM Incoming Label Map IP Internet Protocol LDP Label Distribution Protocol L2 Layer 2 L3 Layer 3 LSP Label Switched Path LSR Label Switching Router MPLS MultiProtocol Label Switching NHLFE Next Hop Label Forwarding Entry SVC Switched Virtual Circuit SVP Switched Virtual Path TTL Time-To-Live VC Virtual Circuit VCI Virtual Circuit Identifier VP Virtual Path VPI Virtual Path Identifier2.4. Acknowledgments The ideas and text in this document have been collected from a number of sources and comments received. We would like to thank Rick Boivie, Paul Doolan, Nancy Feldman, Yakov Rekhter, Vijay Srinivasan, and George Swallow for their inputs and ideas.3. MPLS Basics In this section, we introduce some of the basic concepts of MPLS and describe the general approach to be used.3.1. Labels A label is a short, fixed length, locally significant identifier which is used to identify a FEC. The label which is put on a particular packet represents the Forwarding Equivalence Class to which that packet is assigned.Rosen, et al. Standards Track [Page 9]RFC 3031 MPLS Architecture January 2001 Most commonly, a packet is assigned to a FEC based (completely or partially) on its network layer destination address. However, the label is never an encoding of that address. If Ru and Rd are LSRs, they may agree that when Ru transmits a packet to Rd, Ru will label with packet with label value L if and only if the packet is a member of a particular FEC F. That is, they can agree to a "binding" between label L and FEC F for packets moving from Ru to Rd. As a result of such an agreement, L becomes Ru's "outgoing label" representing FEC F, and L becomes Rd's "incoming label" representing FEC F. Note that L does not necessarily represent FEC F for any packets other than those which are being sent from Ru to Rd. L is an arbitrary value whose binding to F is local to Ru and Rd. When we speak above of packets "being sent" from Ru to Rd, we do not imply either that the packet originated at Ru or that its destination is Rd. Rather, we mean to include packets which are "transit packets" at one or both of the LSRs. Sometimes it may be difficult or even impossible for Rd to tell, of an arriving packet carrying label L, that the label L was placed in the packet by Ru, rather than by some other LSR. (This will typically be the case when Ru and Rd are not direct neighbors.) In such cases, Rd must make sure that the binding from label to FEC is one-to-one. That is, Rd MUST NOT agree with Ru1 to bind L to FEC F1, while also agreeing with some other LSR Ru2 to bind L to a different FEC F2, UNLESS Rd can always tell, when it receives a packet with incoming label L, whether the label was put on the packet by Ru1 or whether it was put on by Ru2. It is the responsibility of each LSR to ensure that it can uniquely interpret its incoming labels.3.2. Upstream and Downstream LSRs Suppose Ru and Rd have agreed to bind label L to FEC F, for packets sent from Ru to Rd. Then with respect to this binding, Ru is the "upstream LSR", and Rd is the "downstream LSR". To say that one node is upstream and one is downstream with respect to a given binding means only that a particular label represents a particular FEC in packets travelling from the upstream node to the downstream node. This is NOT meant to imply that packets in that FEC would actually be routed from the upstream node to the downstream node.Rosen, et al. Standards Track [Page 10]RFC 3031 MPLS Architecture January 20013.3. Labeled Packet A "labeled packet" is a packet into which a label has been encoded. In some cases, the label resides in an encapsulation header which
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -