📄 rfc3040.txt
字号:
Security: See RFC 2187 [3] ICP does not convey information about HTTP headers associated with resources. HTTP headers may include access control and cache directives. Since proxies ask for the availability of resources, and subsequently retrieve them using HTTP, false cache hits may occur (object present in cache, but not accessible to a sibling is one example). ICP suffers from all the security problems of UDP. Deployment: Widely deployed. Most current caching proxy implementations support ICP in some form. Submitter: Document editors. See also: "Internet Cache Protocol Extension" [17] (work in progress)7.1.2 Hyper Text Caching Protocol Best known reference: RFC 2756 Hyper Text Caching Protocol (HTCP/0.0) [9] Description: HTCP is a protocol for discovering HTTP caching proxies and cached data, managing sets of HTTP caching proxies, and monitoring cache activity. HTCP requests include HTTP header material, while ICPv2 does not, enabling HTCP replies to more accurately describe the behaviour that would occur as a result of a subsequent HTTP request for the same resource.Cooper, et al. Informational [Page 20]RFC 3040 Internet Web Replication & Caching Taxonomy January 2001 Security: Optionally uses HMAC-MD5 [11] shared secret authentication. Protocol is subject to attack if authentication is not used. Deployment: HTCP is implemented in Squid and the "Web Gateway Interceptor". Submitter: Document editors.7.1.3 Cache Digest Best known references: * "Cache Digest Specification - version 5" [21] * "Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol" [10] (see note) Description: Cache Digests are a response to the problems of latency and congestion associated with previous inter-cache communication mechanisms such as the Internet Cache Protocol (ICP) [2] and the Hyper Text Cache Protocol [9]. Unlike these protocols, Cache Digests support peering between caching proxies and cache servers without a request-response exchange taking place for each inbound request. Instead, a summary of the contents in cache (the Digest) is fetched by other systems that peer with it. Using Cache Digests it is possible to determine with a relatively high degree of accuracy whether a given resource is cached by a particular system. Cache Digests are both an exchange protocol and a data format. Security: If the contents of a Digest are sensitive, they should be protected. Any methods which would normally be applied to secure an HTTP connection can be applied to Cache Digests. A 'Trojan horse' attack is currently possible in a mesh: System A A can build a fake peer Digest for system B and serve it to B's peers if requested. This way A can direct traffic toward/from B. The impact of this problem is minimized by the 'pull' model of transferring Cache Digests from one system to another.Cooper, et al. Informational [Page 21]RFC 3040 Internet Web Replication & Caching Taxonomy January 2001 Cache Digests provide knowledge about peer cache content on a URL level. Hence, they do not dictate a particular level of policy management and can be used to implement various policies on any level (user, organization, etc.). Deployment: Cache Digests are supported in Squid. Cache Meshes: NLANR Mesh; TF-CACHE Mesh (European Academic networks Submitter: Alex Rousskov for [21], Pei Cao for [10]. Note: The technology of Summary Cache [10] is patent pending by the University of Wisconsin-Madison.7.1.4 Cache Pre-filling Best known reference: "Pre-filling a cache - A satellite overview" [20] (work in progress) Description: Cache pre-filling is a push-caching implementation. It is particularly well adapted to IP-multicast networks because it allows preselected resources to be simultaneously inserted into caches within the targeted multicast group. Different implementations of cache pre-filling already exist, especially in satellite contexts. However, there is still no standard for this kind of push-caching and vendors propose solutions either based on dedicated equipment or public domain caches extended with a pre- filling module. Security: Relies on the inter-cache protocols being employed. Deployment: Observed in two commercial content distribution service providers. Submitter: Ivan Lovric7.2 Tightly Coupled Inter-Cache Communication7.2.1 Cache Array Routing Protocol (CARP) v1.0 Also see Section 6.3Cooper, et al. Informational [Page 22]RFC 3040 Internet Web Replication & Caching Taxonomy January 2001 Best known references: * "Cache Array Routing Protocol" [14] (work in progress) * "Cache Array Routing Protocol (CARP) v1.0 Specifications" [15] * "Cache Array Routing Protocol and Microsoft Proxy Server 2.0" [16] Description: CARP is a hashing function for dividing URL-space among a cluster of proxies. Included in CARP is the definition of a Proxy Array Membership Table, and ways to download this information. A user agent which implements CARP v1.0 can allocate and intelligently route requests for the URLs to any member of the Proxy Array. Due to the resulting sorting of requests through these proxies, duplication of cache contents is eliminated and global cache hit rates may be improved. Security: Security considerations are not covered in the specification works in progress. Deployment: Implemented in caching proxy servers. More than two independent implementations. Submitter: Document editors.8. Network Element Communication This section describes the cooperation and communication between proxies and network elements. Examples of such network elements include routers and switches. Generally used for deploying interception proxies and/or diffused arrays.8.1 Web Cache Control Protocol (WCCP) Best known references: "Web Cache Control Protocol" [18][19] (work in progress) Note: The name used for this protocol varies, sometimes referred to as the "Web Cache Coordination Protocol", but frequently just "WCCP" to avoid confusionCooper, et al. Informational [Page 23]RFC 3040 Internet Web Replication & Caching Taxonomy January 2001 Description: WCCP V1 runs between a router functioning as a redirecting network element and out-of-path interception proxies. The protocol allows one or more proxies to register with a single router to receive redirected traffic. It also allows one of the proxies, the designated proxy, to dictate to the router how redirected traffic is distributed across the array. WCCP V2 additionally runs between multiple routers and the proxies. Security: WCCP V1 has no security features. WCCP V2 provides optional authentication of protocol packets. Deployment: Network elements: WCCP is deployed on a wide range of Cisco routers. Caching proxies: WCCP is deployed on a number of vendors' caching proxies. Submitter: David Forster Document editors.8.2 Network Element Control Protocol (NECP) Best known reference: "NECP: The Network Element Control Protocol" [22] (work in progress) Description: NECP provides methods for network elements to learn about server capabilities, availability, and hints as to which flows can and cannot be serviced. This allows network elements to perform load balancing across a farm of servers, redirection to interception proxies, and cut-through of flows that cannot be served by the farm. Security: Optionally uses HMAC-SHA-1 [11] shared secret authentication along with complex sequence numbers to provide moderately strong security. Protocol is subject to attack if authentication is not used. Deployment: Unknown at present; several network element and caching proxy vendors have expressed intent to implement the protocol.Cooper, et al. Informational [Page 24]RFC 3040 Internet Web Replication & Caching Taxonomy January 2001 Submitter: Gary Tomlinson8.3 SOCKS Best known reference: RFC 1928 SOCKS Protocol Version 5 [7] Description: SOCKS is primarily used as a caching proxy to firewall protocol. Although firewalls don't conform to the narrowly defined network element definition above, they are a integral part of the network infrastructure. When used in conjunction with a firewall, SOCKS provides a authenticated tunnel between the caching proxy and the firewall. Security: An extensive framework provides for multiple authentication methods. Currently, SSL, CHAP, DES, 3DES are known to be available. Deployment: SOCKS is widely deployed in the Internet. Submitter: Document editors.9. Security Considerations This document provides a taxonomy for web caching and replication. Recommended practice, architecture and protocols are not described in detail. By definition, replication and caching involve the copying of resources. There are legal implications of making and keeping transient or permanent copies; these are not covered here. Information on security of each protocol referred to by this memo is provided in the preceding sections, and in their accompanying documentation. HTTP security is discussed in section 15 of RFC 2616 [1], the HTTP/1.1 specification, and to a lesser extent in RFC 1945 [6], the HTTP/1.0 specification. RFC 2616 contains security considerations for HTTP proxies.Cooper, et al. Informational [Page 25]RFC 3040 Internet Web Replication & Caching Taxonomy January 2001 Caching proxies have the same security issues as other application level proxies. Application level proxies are not covered in these security considerations. IP number based authentication is problematic when a proxy is involved in the communications. Details are not discussed here.9.1 Authentication Requests for web resources, and responses to such requests, may be directed to replicas and/or may flow through intermediate proxies. The integrity of communication needs to be preserved to ensure protection from both loss of access and from unintended change.9.1.1 Man in the middle attacks HTTP proxies are men-in-the-middle, the perfect place for a man-in- the-middle-attack. A discussion of this is found in section 15 of RFC 2616 [1].9.1.2 Trusted third party A proxy must either be trusted to act on behalf of the origin server and/or client, or it must act as a tunnel. When presenting cached objects to clients, the clients need to trust the caching proxy to act on behalf on the origin server. A replica may get accreditation from the origin server.9.1.3 Authentication based on IP number Authentication based on the client's IP number is problematic when connecting through a proxy, since the authenticating device only has access to the proxy's IP number. One (problematic) solution to this is for the proxy to spoof the client's IP number for inbound
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -