📄 slcmplex.c
字号:
/* Complex Data Type definition for S-Lang *//* Copyright (c) 1997, 1999, 2001, 2002, 2003 John E. Davis * This file is part of the S-Lang library. * * You may distribute under the terms of either the GNU General Public * License or the Perl Artistic License. */#include "slinclud.h"#include "slang.h"#include "_slang.h"/* The rest of the file is enclosed in this #if */#if SLANG_HAS_COMPLEX#if SLANG_HAS_FLOAT# include <math.h>#endif#ifdef PI# undef PI#endif#define PI 3.14159265358979323846int SLang_pop_complex (double *r, double *i){ double *c; switch (SLang_peek_at_stack ()) { case SLANG_COMPLEX_TYPE: if (-1 == SLclass_pop_ptr_obj (SLANG_COMPLEX_TYPE, (VOID_STAR *)&c)) return -1; *r = c[0]; *i = c[1]; SLfree ((char *) c); break; default: *i = 0.0; if (-1 == SLang_pop_double (r, NULL, NULL)) return -1; break; case -1: return -1; } return 0;}int SLang_push_complex (double r, double i){ double *c; c = (double *) SLmalloc (2 * sizeof (double)); if (c == NULL) return -1; c[0] = r; c[1] = i; if (-1 == SLclass_push_ptr_obj (SLANG_COMPLEX_TYPE, (VOID_STAR) c)) { SLfree ((char *) c); return -1; } return 0;}double *SLcomplex_times (double *c, double *a, double *b){ double a_real, b_real, a_imag, b_imag; a_real = a[0]; b_real = b[0]; a_imag = a[1]; b_imag = b[1]; c[0] = a_real * b_real - a_imag * b_imag; c[1] = a_imag * b_real + a_real * b_imag; return c;}double *SLcomplex_divide (double *c, double *a, double *b){ double a_real, b_real, a_imag, b_imag; double ratio, invden; a_real = a[0]; b_real = b[0]; a_imag = a[1]; b_imag = b[1]; /* Do it this way to avoid overflow in the denom */ if (fabs(b_real) > fabs(b_imag)) { ratio = b_imag / b_real; invden = 1.0 / (b_real + b_imag * ratio); c[0] = (a_real + ratio * a_imag) * invden; c[1] = (a_imag - a_real * ratio) * invden; } else { ratio = b_real / b_imag; invden = 1.0 / (b_real * ratio + b_imag); c[0] = (a_real * ratio + a_imag) * invden; c[1] = (a_imag * ratio - a_real) * invden; } return c;}/* a^b = exp (b log a); */double *SLcomplex_pow (double *c, double *a, double *b){ return SLcomplex_exp (c, SLcomplex_times (c, b, SLcomplex_log (c, a)));}static double *complex_dpow (double *c, double *a, double b){ SLcomplex_log (c, a); c[0] *= b; c[1] *= b; return SLcomplex_exp (c, c);}static double *dcomplex_pow (double *c, double a, double *b){ a = log (a); c[0] = a * b[0]; c[1] = a * b[1]; return SLcomplex_exp (c, c);}double SLcomplex_abs (double *z){ return SLmath_hypot (z[0], z[1]);}/* It appears that FORTRAN assumes that the branch cut for the log function * is along the -x axis. So, use this for atan2: */static double my_atan2 (double y, double x){ double val; val = atan (y/x); if (x >= 0) return val; /* I, IV */ if (y <= 0) /* III */ return val - PI; return PI + val; /* II */}static void polar_form (double *r, double *theta, double *z){ double x, y; *r = SLcomplex_abs (z); x = z[0]; y = z[1]; if (x == 0.0) { if (y >= 0) *theta = 0.5 * PI; else *theta = 1.5 * PI; } else *theta = my_atan2 (y, x);}double *SLcomplex_sin (double *sinz, double *z){ double x, y; x = z[0]; y = z[1]; sinz[0] = sin (x) * cosh (y); sinz[1] = cos (x) * sinh (y); return sinz;}double *SLcomplex_cos (double *cosz, double *z){ double x, y; x = z[0]; y = z[1]; cosz[0] = cos (x) * cosh (y); cosz[1] = -sin (x) * sinh (y); return cosz;}double *SLcomplex_exp (double *expz, double *z){ double r, i; r = exp (z[0]); i = z[1]; expz[0] = r * cos (i); expz[1] = r * sin (i); return expz;}double *SLcomplex_log (double *logz, double *z){ double r, theta; polar_form (&r, &theta, z); /* log R.e^(ix) = log R + ix */ logz[0] = log(r); logz[1] = theta; return logz;}double *SLcomplex_log10 (double *log10z, double *z){ double l10 = log (10.0); (void) SLcomplex_log (log10z, z); log10z[0] = log10z[0] / l10; log10z[1] = log10z[1] / l10; return log10z;}double *SLcomplex_sqrt (double *sqrtz, double *z){ double r, x, y; x = z[0]; y = z[1]; r = SLmath_hypot (x, y); if (r == 0.0) { sqrtz [0] = sqrtz [1] = 0.0; return sqrtz; } if (x >= 0.0) { x = sqrt (0.5 * (r + x)); y = 0.5 * y / x; } else { r = sqrt (0.5 * (r - x)); x = 0.5 * y / r; y = r; if (x < 0.0) { x = -x; y = -y; } } sqrtz[0] = x; sqrtz[1] = y; return sqrtz;}double *SLcomplex_tan (double *tanz, double *z){ double x, y, invden; x = 2 * z[0]; y = 2 * z[1]; invden = 1.0 / (cos (x) + cosh (y)); tanz[0] = invden * sin (x); tanz[1] = invden * sinh (y); return tanz;}/* Utility Function */static void compute_alpha_beta (double *z, double *alpha, double *beta){ double x, y, a, b; x = z[0]; y = z[1]; a = 0.5 * SLmath_hypot (x + 1, y); b = 0.5 * SLmath_hypot (x - 1, y); *alpha = a + b; *beta = a - b;}double *SLcomplex_asin (double *asinz, double *z){ double alpha, beta; compute_alpha_beta (z, &alpha, &beta); asinz[0] = asin (beta); asinz[1] = log (alpha + sqrt (alpha * alpha - 1)); return asinz;}double *SLcomplex_acos (double *acosz, double *z){ double alpha, beta; compute_alpha_beta (z, &alpha, &beta); acosz[0] = acos (beta); acosz[1] = -log (alpha + sqrt (alpha * alpha - 1)); return acosz;}double *SLcomplex_atan (double *atanz, double *z){ double x, y; double z1[2], z2[2]; x = z[0]; y = z[1]; z1[0] = x; z1[1] = 1 + y; z2[0] = -x; z2[1] = 1 - y; SLcomplex_log (z1, SLcomplex_divide (z2, z1, z2)); atanz[0] = -0.5 * z1[1]; atanz[1] = 0.5 * z1[0]; return atanz;}double *SLcomplex_sinh (double *sinhz, double *z){ double x, y; x = z[0]; y = z[1]; sinhz[0] = sinh (x) * cos (y); sinhz[1] = cosh (x) * sin (y); return sinhz;}double *SLcomplex_cosh (double *coshz, double *z){ double x, y; x = z[0]; y = z[1]; coshz[0] = cosh (x) * cos (y); coshz[1] = sinh (x) * sin (y); return coshz;}double *SLcomplex_tanh (double *tanhz, double *z){ double x, y, invden; x = 2 * z[0]; y = 2 * z[1]; invden = 1.0 / (cosh (x) + cos (y)); tanhz[0] = invden * sinh (x); tanhz[1] = invden * sin (y); return tanhz;}#if 0static double *not_implemented (char *fun, double *p){ SLang_verror (SL_NOT_IMPLEMENTED, "%s for complex numbers has not been implemented", fun); *p = -1.0; return p;}#endif/* Use: asinh(z) = -i asin(iz) */double *SLcomplex_asinh (double *asinhz, double *z){ double iz[2]; iz[0] = -z[1]; iz[1] = z[0]; (void) SLcomplex_asin (iz, iz); asinhz[0] = iz[1]; asinhz[1] = -iz[0]; return asinhz;}/* Use: acosh (z) = i acos(z) */double *SLcomplex_acosh (double *acoshz, double *z){ double iz[2]; (void) SLcomplex_acos (iz, z); acoshz[0] = -iz[1]; acoshz[1] = iz[0]; return acoshz;}/* Use: atanh(z) = -i atan(iz) */double *SLcomplex_atanh (double *atanhz, double *z){ double iz[2]; iz[0] = -z[1]; iz[1] = z[0]; (void) SLcomplex_atan (iz, iz); atanhz[0] = iz[1]; atanhz[1] = -iz[0]; return atanhz;}static int complex_binary_result (int op, unsigned char a, unsigned char b, unsigned char *c){ (void) a; (void) b; switch (op) { default: case SLANG_POW: case SLANG_PLUS: case SLANG_MINUS: case SLANG_TIMES: case SLANG_DIVIDE: *c = SLANG_COMPLEX_TYPE; break; case SLANG_EQ: case SLANG_NE: *c = SLANG_CHAR_TYPE; break; } return 1;}static int complex_complex_binary (int op, unsigned char a_type, VOID_STAR ap, unsigned int na, unsigned char b_type, VOID_STAR bp, unsigned int nb, VOID_STAR cp){ char *ic; double *a, *b, *c; unsigned int n, n_max; unsigned int da, db; (void) a_type; (void) b_type; a = (double *) ap; b = (double *) bp; c = (double *) cp; ic = (char *) cp; if (na == 1) da = 0; else da = 2; if (nb == 1) db = 0; else db = 2; if (na > nb) n_max = na; else n_max = nb; n_max = 2 * n_max; switch (op) { default: return 0; case SLANG_PLUS: for (n = 0; n < n_max; n += 2) { c[n] = a[0] + b[0]; c[n + 1] = a[1] + b[1]; a += da; b += db; } break; case SLANG_MINUS: for (n = 0; n < n_max; n += 2) { c[n] = a[0] - b[0]; c[n + 1] = a[1] - b[1]; a += da; b += db; } break; case SLANG_TIMES: for (n = 0; n < n_max; n += 2) { SLcomplex_times (c + n, a, b); a += da; b += db; } break; case SLANG_DIVIDE: /* / */ for (n = 0; n < n_max; n += 2) { if ((b[0] == 0.0) && (b[1] == 0.0)) { SLang_Error = SL_DIVIDE_ERROR; return -1; } SLcomplex_divide (c + n, a, b); a += da; b += db; } break; case SLANG_EQ: /* == */ for (n = 0; n < n_max; n += 2) { ic[n/2] = ((a[0] == b[0]) && (a[1] == b[1])); a += da; b += db; } break; case SLANG_NE: /* != */ for (n = 0; n < n_max; n += 2) { ic[n/2] = ((a[0] != b[0]) || (a[1] != b[1])); a += da; b += db; } break; case SLANG_POW: for (n = 0; n < n_max; n += 2) { SLcomplex_pow (c + n, a, b); a += da; b += db; } break; } return 1;}static int complex_double_binary (int op, unsigned char a_type, VOID_STAR ap, unsigned int na, unsigned char b_type, VOID_STAR bp, unsigned int nb, VOID_STAR cp){ char *ic; double *a, *b, *c; unsigned int n, n_max; unsigned int da, db; (void) a_type; (void) b_type; a = (double *) ap; b = (double *) bp; c = (double *) cp; ic = (char *) cp; if (na == 1) da = 0; else da = 2; if (nb == 1) db = 0; else db = 1; if (na > nb) n_max = na; else n_max = nb; n_max = 2 * n_max; switch (op) { default: return 0; case SLANG_PLUS: for (n = 0; n < n_max; n += 2) { c[n] = a[0] + b[0]; c[n + 1] = a[1]; a += da; b += db; } break; case SLANG_MINUS: for (n = 0; n < n_max; n += 2) { c[n] = a[0] - b[0];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -