⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lexopt.pas

📁 Yacc例子代码
💻 PAS
字号:
{
  DFA optimization algorithm.
  This is an efficient (O(n log(n)) DFA optimization procedure based on the
  algorithm given in Aho/Sethi/Ullman, 1986, Section 3.9.


  Copyright (c) 1990-92  Albert Graef <ag@muwiinfa.geschichte.uni-mainz.de>
  Copyright (C) 1996     Berend de Boer <berend@pobox.com>

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


$Revision: 2 $
$Modtime: 96-08-01 6:29 $

$History: LEXOPT.PAS $
 * 
 * *****************  Version 2  *****************
 * User: Berend       Date: 96-10-10   Time: 21:16
 * Updated in $/Lex and Yacc/tply
 * Updated for protected mode, windows and Delphi 1.X and 2.X.

}


unit LexOpt;

interface



procedure optimizeDFATable;
  (* optimize the state table *)

implementation

uses LexBase, LexTable;

(* Partition table used in DFA optimization: *)

(* obsolete

const

max_parts = max_states;*)  (* number of partitions of equivalent states; at
                            worst, each state may be in a partition by
                            itself *)

type

PartTable      = array [0..max_states-1] of IntSetPtr;
                   (* state partitions (DFA optimization) *)

StatePartTable = array [0..max_states-1] of Integer;
                   (* partition number of states *)

var

(* partition table: *)

n_parts           : Integer;
part_table        : ^PartTable;
state_part        : ^StatePartTable;

(* optimized state and transition table: *)

n_opt_states      : Integer;
n_opt_trans       : Integer;
opt_state_table   : ^StateTable;
opt_trans_table   : ^TransTable;


function equivStates(i, j : Integer) : Boolean;
  (* checks whether states i and j are equivalent; two states are considered
     equivalent iff:
     - they cover the same marker positions (/ and endmarkers of rules)
     - they have transitions on the same symbols/characters, and corresponding
       transitions go to states in the same partition
     two different start states are never considered equivalent *)
  var ii, jj, k : Integer;
      mark_pos_i, mark_pos_j : IntSet;
  begin
    (* check for start states: *)
    if (i<=2*n_start_states+1) and (j<=2*n_start_states+1) and
       (i<>j) then
      begin
        equivStates := false;
        exit;
      end;
    (* check end positions: *)
    empty(mark_pos_i);
    with state_table^[i] do
      for k := 1 to size(state_pos^) do
        if pos_table^[state_pos^[k]].pos_type=mark_pos then
          include(mark_pos_i, state_pos^[k]);
    empty(mark_pos_j);
    with state_table^[j] do
      for k := 1 to size(state_pos^) do
        if pos_table^[state_pos^[k]].pos_type=mark_pos then
          include(mark_pos_j, state_pos^[k]);
    if not equal(mark_pos_i, mark_pos_j) then
      begin
        equivStates := false;
        exit
      end;
    (* check transitions: *)
    if n_state_trans(i)<>n_state_trans(j) then
      equivStates := false
    else
      begin
        ii := state_table^[i].trans_lo;
        jj := state_table^[j].trans_lo;
        for k := 0 to pred(n_state_trans(i)) do
          if (trans_table^[ii+k].cc^<>trans_table^[jj+k].cc^) then
            begin
              equivStates := false;
              exit
            end
          else if state_part^[trans_table^[ii+k].next_state]<>
                  state_part^[trans_table^[jj+k].next_state] then
            begin
              equivStates := false;
              exit
            end;
        equivStates := true;
      end
  end(*equivStates*);

procedure optimizeDFATable;

  var
    i, ii, j : Integer;
    act_part, new_part, n_new_parts : Integer;

  begin

    n_parts := 0;

    (* Initially, create one partition containing ALL states: *)

    n_parts := 1;
    part_table^[0] := newIntSet;
    for i := 0 to n_states-1 do
      begin
	include(part_table^[0]^, i);
	state_part^[i] := 0;
      end;

    (* Now, repeatedly pass over the created partitions, breaking up
       partitions if they contain nonequivalent states, until no more
       partitions have been added during the last pass: *)

    repeat
      n_new_parts := 0; act_part := 0;
      new_part := n_parts;
      part_table^[new_part] := newIntSet;
      while (n_parts<n_states) and (act_part<n_parts) do
        begin
          for i := 2 to size(part_table^[act_part]^) do
            if not equivStates(part_table^[act_part]^[1],
                               part_table^[act_part]^[i]) then
              (* add to new partition: *)
              include(part_table^[new_part]^, part_table^[act_part]^[i]);
          if size(part_table^[new_part]^)<>0 then
            begin
              (* add new partition: *)
              inc(n_parts); inc(n_new_parts);
              (* remove new partition from old one: *)
              setminus(part_table^[act_part]^, part_table^[new_part]^);
              (* update partition assignments: *)
              for i := 1 to size(part_table^[new_part]^) do
                state_part^[part_table^[new_part]^[i]] := new_part;
              inc(new_part);
              part_table^[new_part] := newIntSet;
            end;
          inc(act_part);
        end;
    until n_new_parts=0;

    (* build the optimized state table: *)

    n_opt_states := n_parts;
    n_opt_trans := 0;
    for i := 0 to n_parts-1 do
      begin
        ii := part_table^[i]^[1];
        opt_state_table^[i] := state_table^[ii];
        with opt_state_table^[i] do
          begin
            trans_lo := n_opt_trans+1;
            trans_hi := n_opt_trans+1+state_table^[ii].trans_hi-
                        state_table^[ii].trans_lo;
            for j := 2 to size(part_table^[i]^) do
              setunion(state_pos^, state_table^[
                                     part_table^[i]^[j]].state_pos^);
          end;
        for j := state_table^[ii].trans_lo to state_table^[ii].trans_hi do
          begin
            inc(n_opt_trans);
            opt_trans_table^[n_opt_trans] := trans_table^[j];
            with opt_trans_table^[n_opt_trans] do
              next_state := state_part^[next_state];
          end;
      end;

      (* update state table: *)

      n_states     := n_opt_states;
      n_trans      := n_opt_trans;
      state_table^ := opt_state_table^;
      trans_table^ := opt_trans_table^;

  end(*optimizeDFATable*);

begin
  new(part_table);
  new(state_part);
  new(opt_state_table);
  new(opt_trans_table);
end(*LexOpt*).

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -