📄 lextable.pas
字号:
begin
inc(n_pos);
if n_pos>max_pos then fatal(pos_table_overflow);
pos_table^[n_pos].follow_pos := newIntSet;
pos_table^[n_pos].pos_type := cclass_pos;
pos_table^[n_pos].cc := cc;
end(*addCClassPos*);
procedure addMarkPos(rule, pos : Integer);
begin
inc(n_pos);
if n_pos>max_pos then fatal(pos_table_overflow);
pos_table^[n_pos].follow_pos := newIntSet;
pos_table^[n_pos].pos_type := mark_pos;
pos_table^[n_pos].rule := rule;
pos_table^[n_pos].pos := pos;
end(*addMarkPos*);
(* Routines to build the state table: *)
function newState(POS : IntSetPtr) : Integer;
begin
if n_states>=max_states then fatal(state_table_overflow);
newState := n_states;
with state_table^[n_states] do
begin
state_pos := POS;
final := false;
end;
inc(n_states);
end(*newState*);
function addState(POS : IntSetPtr) : Integer;
var i : Integer;
begin
for i := 0 to pred(n_states) do
if equal(POS^, state_table^[i].state_pos^) then
begin
addState := i;
exit;
end;
addState := newState(POS);
end(*addState*);
procedure startStateTrans;
begin
state_table^[act_state].trans_lo := succ(n_trans);
end(*startStateTrans*);
procedure endStateTrans;
begin
state_table^[act_state].trans_hi := n_trans;
end(*endStateTrans*);
function n_state_trans(i : Integer) : Integer;
begin
with state_table^[i] do
n_state_trans := trans_hi-trans_lo+1
end(*n_state_trans*);
(* Construction of the transition table:
This implementation here uses a simple optimization which tries to avoid
the construction of different transitions for each individual character
in large character classes by MERGING transitions whenever possible. The
transitions, at any time, will be partitioned into transitions on disjoint
character classes. When adding a new transition on character class cc, we
repartition the transitions as follows:
1. If the current character class cc equals an existing one, we can
simply add the new follow set to the existing one.
2. Otherwise, for some existing transition on some character class
cc1 with cc*cc1<>[], we replace the existing transition by a new
transition on cc*cc1 with follow set = cc1's follow set + cc's follow
set, and, if necessary (i.e. if cc1-cc is nonempty), a transition on
cc1-cc with follow set = cc1's follow set. We then remove the elements
of cc1 from cc, and proceed again with step 1.
We may stop this process as soon as cc becomes empty (then all characters
in cc have been distributed among the existing partitions). If cc does
NOT become empty, we have to construct a new transition for the remaining
character class (which then will be disjoint from all other character
classes in the transition table). *)
procedure addTrans(cc : CClass; FOLLOW : IntSetPtr);
var
i : Integer;
cc0, cc1, cc2 : CClass;
begin
for i := state_table^[act_state].trans_lo to n_trans do
if trans_table^[i].cc^=cc then
begin
setunion(trans_table^[i].follow_pos^, FOLLOW^);
exit
end
else
begin
cc0 := cc*trans_table^[i].cc^;
if cc0<>[] then
begin
cc1 := trans_table^[i].cc^-cc;
cc2 := cc-trans_table^[i].cc^;
if cc1<>[] then
begin
trans_table^[i].cc^ := cc1;
inc(n_trans);
if n_trans>max_trans then fatal(trans_table_overflow);
trans_table^[n_trans].cc := newCClass(cc0);
trans_table^[n_trans].follow_pos := newIntSet;
trans_table^[n_trans].follow_pos^ :=
trans_table^[i].follow_pos^;
setunion(trans_table^[n_trans].follow_pos^, FOLLOW^);
end
else
begin
trans_table^[i].cc^ := cc0;
setunion(trans_table^[i].follow_pos^, FOLLOW^);
end;
cc := cc2;
if cc=[] then exit;
end
end;
inc(n_trans);
if n_trans>max_trans then fatal(trans_table_overflow);
trans_table^[n_trans].cc := newCClass(cc);
trans_table^[n_trans].follow_pos := newIntSet;
trans_table^[n_trans].follow_pos^ := FOLLOW^;
end(*addCharTrans*);
(* comparison and swap procedures for sorting transitions: *)
{$ifndef fpc}{$F+}{$endif}
function transLessNextState(i, j : Integer) : Boolean;
{$ifndef fpc}{$F-}{$endif}
(* compare transitions based on next states (used in mergeCharTrans) *)
begin
transLessNextState := trans_table^[i].next_state<
trans_table^[j].next_state
end(*transLessNextState*);
{$ifndef fpc}{$F+}{$endif}
function transLess(i, j : Integer) : Boolean;
{$ifndef fpc}{$F-}{$endif}
(* lexical order on transitions *)
var c : Char; xi, xj : Boolean;
begin
for c := #0 to #255 do
begin
xi := c in trans_table^[i].cc^;
xj := c in trans_table^[j].cc^;
if xi<>xj then
begin
transLess := ord(xi)>ord(xj);
exit
end;
end;
transLess := false
end(*transLess*);
{$ifndef fpc}{$F+}{$endif}
procedure transSwap(i, j : Integer);
{$ifndef fpc}{$F-}{$endif}
(* swap transitions i and j *)
var x : TransTableEntry;
begin
x := trans_table^[i];
trans_table^[i] := trans_table^[j];
trans_table^[j] := x;
end(*transSwap*);
procedure mergeTrans;
var
i, j, n_deleted : Integer;
begin
(* sort transitions w.r.t. next states: *)
quicksort(state_table^[act_state].trans_lo,
n_trans,
{$ifdef fpc}@{$endif}transLessNextState,
{$ifdef fpc}@{$endif}transSwap);
(* merge transitions for the same next state: *)
n_deleted := 0;
for i := state_table^[act_state].trans_lo to n_trans do
if trans_table^[i].cc<>nil then
begin
j := succ(i);
while (j<=n_trans) and
(trans_table^[i].next_state =
trans_table^[j].next_state) do
begin
(* merge cclasses of transitions i and j, then mark
transition j as deleted *)
trans_table^[i].cc^ := trans_table^[i].cc^+
trans_table^[j].cc^;
trans_table^[j].cc := nil;
inc(n_deleted);
inc(j);
end;
end;
(* remove deleted transitions: *)
j := state_table^[act_state].trans_lo;
for i := state_table^[act_state].trans_lo to n_trans do
if trans_table^[i].cc<>nil then
if i<>j then
begin
trans_table^[j] := trans_table^[i];
inc(j);
end
else
inc(j);
(* update transition count: *)
dec(n_trans, n_deleted);
end(*mergeTrans*);
procedure sortTrans;
begin
quicksort(state_table^[act_state].trans_lo,
n_trans,
{$ifdef fpc}@{$endif}transLess,
{$ifdef fpc}@{$endif}transSwap);
end(*sortTrans*);
var i : Integer;
begin
verbose := false;
optimize := false;
{$IFNDEF Win32}
max_bytes := memAvail;
{$ENDIF}
n_pos := 0;
n_states := 0;
n_trans := 0;
n_start_states := 0;
(* allocate tables: *)
new(sym_table);
new(pos_table);
new(first_pos_table);
new(state_table);
new(trans_table);
(* initialize symbol table: *)
for i := 1 to max_keys do sym_table^[i].pname := nil;
end(*LexTables*).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -