⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 xmlschemamessages_hu.properties

📁 ACM比赛统计排位软件
💻 PROPERTIES
📖 第 1 页 / 共 4 页
字号:
        src-redefine.7.1 = src-redefine.7.1:  ha egy <redefine> elem attrib\u00fatumcsoport lesz\u00e1rmazottja tartalmaz egy \u00f6nmag\u00e1ra hivatkoz\u00f3 attrib\u00fatumcsoportot, akkor pontosan 1-et kell tartalmaznia; ez ''{0}''-t tartalmaz.
        src-redefine.7.2.1 = src-redefine.7.2.1: nincs olyan attrib\u00fatumcsoport az \u00fajradefini\u00e1lt s\u00e9m\u00e1ban, aminek a neve illeszkedik a(z) ''{0}'' mint\u00e1ra.
        src-redefine.7.2.2 = src-redefine.7.2.2: a(z) ''{0}'' attrib\u00fatumcsoport nem korl\u00e1tozza megfelel\u0151en az attrib\u00fatumcsoportot, amit \u00fajradefini\u00e1l; megszegi a felt\u00e9telt:  ''{1}''.
        src-resolve = src-resolve: A(z) ''{0}'' n\u00e9v nem oldhat\u00f3 fel {1} komponenss\u00e9.
        src-resolve.4 = src-resolve.4: A(z) ''{1}'' n\u00e9vt\u00e9r komponenseire nem hivatkozhat a(z) ''{0}'' s\u00e9ma dokumentumb\u00f3l.
        src-restriction-base-or-simpleType = src-restriction-base-or-simpleType: hiba.
        src-simple-type = src-simple-type: hiba.
        src-single-facet-value = src-single-facet-value: {0}
        src-union-memberTypes-or-simpleTypes = src-union-memberTypes-or-simpleTypes: hiba.
        src-wildcard = src-wildcard: {0} hiba.
        st-restrict-facets = st-restrict-facets: hiba.

#constraint valid (3.X.6)

        ag-props-correct = ag-props-correct: hiba.
        an-props-correct = an-props-correct: hiba.
        a-props-correct.1 = a-props-correct.1: hiba.
        a-props-correct.2 = a-props-correct.2: \u00c9rv\u00e9nytelen \u00e9rt\u00e9kfelt\u00e9tel \u00e9rt\u00e9k (''{1}'') a(z) ''{0}'' attrib\u00fatumban..
        a-props-correct.3 = a-props-correct.3: Nem lehet '{'\u00e9rt\u00e9kfelt\u00e9tel'}' a(z) ''{0}'' attrib\u00fatumon, mert annak '{'t\u00edpusdefin\u00edci\u00f3ja'}' ID-b\u0151l sz\u00e1rmazik.
        au-props-correct.1 = au-props-correct.1: hiba.
        au-props-correct.2 = au-props-correct.2: A(z) ''{0}'' referencia attrib\u00fatum '{'\u00e9rt\u00e9kfelt\u00e9tele'}' r\u00f6gz\u00edtett kell legyen \u00e9s \u00e9rt\u00e9k\u00e9nek illeszkednie kell a(z) ''{0}'' '{'\u00e9rt\u00e9kfelt\u00e9tel\u00e9re'}'.
        cos-all-limited = cos-all-limited: hiba.
        cos-all-limited.1.2 = cos-all-limited.1.2:  Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Egy all (minden) csoport a modellcsoport tartalm\u00e1b\u00f3l kell \u00e1lljon.
        cos-applicable-facets = cos-applicable-facets: A(z) ''{0}'' facet-et nem engedi meg ez a t\u00edpus.
        cos-aw-intersect = cos-aw-intersect: hiba.
        cos-aw-union = cos-aw-union: hiba.
        cos-choice-range = cos-choice-range: hiba.
        cos-ct-derived-ok = cos-ct-derived-ok: hiba.
        cos-ct-extends = cos-ct-extends: hiba.
        cos-ct-extends.1.1 = cos-ct-extends.1.1: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  A kirejeszt\u00e9s nem lehet az alapt\u00edpus v\u00e9gs\u0151 halmaz\u00e1ban.
        cos-ct-extends.1.4.2.2.2.2.1 = cos-ct-extends.1.4.2.2.2.2.1: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Egy sz\u00e1rmaztatott t\u00edpus \u00e9s ananek alapt\u00edpus\u00e1nak tartalomt\u00edpusa mindkett\u0151 kevert vagy mindkett\u0151 csak-elem kell legyen.
        cos-element-consistent = cos-element-consistent: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  T\u00f6bb elem fordul el\u0151 ''{1}'' n\u00e9ven, k\u00fcl\u00f6nb\u00f6z\u0151 t\u00edpusokkal, a modell csoportban.
        cos-equiv-class = cos-equiv-class: hiba.
        cos-equiv-derived-ok-rec = cos-equiv-derived-ok-rec: hiba.
        cos-group-emptiable = cos-group-emptiable: hiba.
        cos-list-of-atomic = cos-list-of-atomic: ''{0}'' t\u00edpus.
        cos-no-circular-unions = cos-no-circular-unions: hiba.
        cos-nonambig = cos-nonambig: A(z) {0} \u00e9s a(z) {1} (vagy elemek a helyettes\u00edt\u00e1si csoportjukb\u00f3l) megszegik az \"Egyedi r\u00e9szecske attrib\u00faci\u00f3s\" szab\u00e1lyt.
        cos-ns-subset = cos-ns-subset: hiba.
        cos-particle-extend = cos-particle-extend: hiba.
        cos-particle-restrict = cos-particle-restrict: hiba.
        cos-particle-restrict.2 = cos-particle-restrict.2: Tiltott r\u00e9szecske korl\u00e1toz\u00e1s:  ''{0}''.
        cos-seq-range = cos-seq-range: hiba.
        cos-st-derived-ok = cos-st-derived-ok: hiba.
        cos-st-restricts = cos-st-restricts: hiba.
        cos-valid-default.1 = cos-valid-default.1: hiba.
        cos-valid-default.2.1 = cos-valid-default.2.1: A(z) ''{0}'' elemnek van \u00e9rt\u00e9kfelt\u00e9tele \u00e9s kevert vagy egyszer\u0171 tartalommodellje kell legyen.
        cos-valid-default.2.2.1 = cos-valid-default.2.2.1: hiba.
        cos-valid-default.2.2.2 = cos-valid-default.2.2.2: A(z) ''{0}'' elemre, a '{'tartalomt\u00edpus'}' kevert, ekkor a '{'tartalomt\u00edpus'}' r\u00e9szecsk\u00e9je ki\u00fcr\u00edthet\u0151 kell legyen.
        c-props-correct.1 = c-props-correct.1: hiba.
        c-props-correct.2 = c-props-correct.2: A(z) ''{0}'' kulcshivatkoz\u00e1s \u00e9s a(z) ''{1}'' kulcs mez\u0151inek sz\u00e1moss\u00e1ga meg kell egyezzen.
        ct-props-correct = ct-props-correct: hiba.
        ct-props-correct.4 = ct-props-correct.4: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Ism\u00e9telt attrib\u00fatumhaszn\u00e1latot adott meg ugyanazzal a n\u00e9vvel \u00e9s n\u00e9vt\u00e9rrel.  A megism\u00e9telt attrib\u00fatumhaszn\u00e1lat neve ''{1}''.
        ct-props-correct.5 = ct-props-correct.5: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  K\u00e9t attrib\u00fatum deklar\u00e1ci\u00f3nak, a(z) ''{1}''-nak \u00e9s a(z) ''{2}''-nak, a t\u00edpusai az ID-b\u0151l sz\u00e1rmaztathat\u00f3k.
        derivation-ok-restriction = derivation-ok-restriction: hiba.
        derivation-ok-restriction.1 = derivation-ok-restriction.1: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Nem lehet korl\u00e1toz\u00e1s az alapt\u00edpus v\u00e9gleges halamz\u00e1ban.
        derivation-ok-restriction.2.1.1= derivation-ok-restriction.2.1.1: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Egy attrib\u00fatumhaszn\u00e1lathoz ebben a t\u00edpusban be van \u00e1ll\u00edtva a REQUIRED be\u00e1ll\u00edt\u00e1s, ami nem konzisztens a megfelel\u0151 attrib\u00fatumhaszn\u00e1lattal az alapt\u00edpusban.
        derivation-ok-restriction.2.1.2= derivation-ok-restriction.2.1.2: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Egy attrib\u00fatumhaszn\u00e1latnak ebben a t\u00edpusban olyan t\u00edpusa van, ami nem \u00e9rv\u00e9nyesen sz\u00e1rmazik az alapt\u00edpus megfelel\u0151 attrib\u00fatumhaszn\u00e1lat\u00e1b\u00f3l.
        derivation-ok-restriction.2.1.3= derivation-ok-restriction.2.1.3: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Egy attrib\u00fatumhaszn\u00e1latnak ebben a t\u00edpusban van egy hat\u00e1sos \u00e9rt\u00e9kfelt\u00e9tele, ami nem konzisztens az alapt\u00edpus megfelel\u0151 attrib\u00fatumhaszn\u00e1lat\u00e1nak hat\u00e1sos felt\u00e9tel\u00e9vel.
        derivation-ok-restriction.2.2= derivation-ok-restriction.2.2: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Egy attrib\u00fatumhaszn\u00e1lathoz ebben a t\u00edpusban nincs megfelel\u0151 attrib\u00fatumhaszn\u00e1lat az alapt\u00edpusban, \u00e9s az alapt\u00edpusnak nincs dzs\u00f3kere, ami illeszkedne erre az attrib\u00fatumhaszn\u00e1latra.
        derivation-ok-restriction.3= derivation-ok-restriction.3: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Van egy attrib\u00fatumhaszn\u00e1lat az alapt\u00edpusban, ahol a REQUIRED igez, amihez nincs megfelel\u0151 attrib\u00fatumhaszn\u00e1lat a sz\u00e1rmaztatott t\u00edpusban.
        derivation-ok-restriction.4= derivation-ok-restriction.4: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  A dzs\u00f3ker a sz\u00e1rmaztatott t\u00edpusban nem \u00e9rv\u00e9nyes r\u00e9szhalmaza a dzs\u00f3kernek az alapt\u00edpusban.
        derivation-ok-restriction.5.1.1 = derivation-ok-restriction.5.1.1: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  A tartalomt\u00edpus nem \u00e9rv\u00e9nyes korl\u00e1toz\u00e1sa az alapt\u00edpus tartalomt\u00edpus\u00e1nak.
        derivation-ok-restriction.5.2 = derivation-ok-restriction.5.2: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  Ennek a t\u00edpusnak a tartalomt\u00edpusa \u00fcres, de az alapt\u00edpus\u00e9 nem az.
        derivation-ok-restriction.5.3 = derivation-ok-restriction.5.3: Hiba a(z) ''{0}'' t\u00edpusn\u00e1l.  A t\u00edpus r\u00e9szecsk\u00e9je nem \u00e9rv\u00e9nyes korl\u00e1toz\u00e1sa az alapt\u00edpus r\u00e9szecsk\u00e9j\u00e9nek.
        enumeration-required-notation = enumeration-required-notation: hiba.
        enumeration-valid-restriction = enumeration-valid-restriction: hiba.
        e-props-correct.1 = e-props-correct.1: hiba.
        e-props-correct.2 = e-props-correct.2: \u00c9rv\u00e9nytelen \u00e9rt\u00e9kfel\u00e9tel \u00e9rt\u00e9k (''{1}'') a(z) ''{0}'' elemben.
        e-props-correct.3 = e-props-correct.3: A(z) ''{0}'' elem '{'t\u00edpusdefin\u00edci\u00f3j\u00e1t'}' \u00e9rv\u00e9nyesen sz\u00e1rmaztatni kell a(z) ''{1}'' helyettes\u00edt\u00e1sifejl\u00e9c '{'t\u00edpusdefin\u00edci\u00f3j\u00e1b\u00f3l'}'.
        e-props-correct.4 = e-props-correct.4: Nem lehet '{'\u00e9rt\u00e9kfelt\u00e9tele'}' a(z) ''{0}'' elemnek, mert a '{'t\u00edpusdefin\u00edci\u00f3ja'}' vagy a '{'t\u00edpusdefin\u00edci\u00f3j\u00e1nak'}' '{'tartalomt\u00edpusa'}' az ID-b\u0151l sz\u00e1rmaztathat\u00f3.
        fractionDigits-totalDigits = fractionDigits-totalDigits: a tizedesjegyek \u00e9rt\u00e9k = ''{0}'' <= kell legyen, min az \u00f6sszes sz\u00e1mjegy \u00e9rt\u00e9k = ''{1}''.
        length-minLength-maxLength = length-minLength-maxLength: Hiba, ha mind a hosszot, mind a minHosszot vagy a maxHosszot megadja.
        length-valid-restriction = length-valid-restriction: A hossz = ''{0}'' \u00e9rt\u00e9ke = kell legyen a(z) ''{1}'' alapt\u00edpus \u00e9rt\u00e9k\u00e9vel.
        maxExclusive-valid-restriction.1 = maxExclusive-valid-restriction.1: A maxExclusive \u00e9rt\u00e9k =''{0}'' <= kell legyen a(z) ''{1}'' alapt\u00edpus maxExclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        maxExclusive-valid-restriction.2 = maxExclusive-valid-restriction.2: A maxExclusive \u00e9rt\u00e9k =''{0}'' <= kell legyen a(z) ''{1}'' alapt\u00edpus maxInclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        maxExclusive-valid-restriction.3 = maxExclusive-valid-restriction.3: A maxExclusive \u00e9rt\u00e9k =''{0}'' > kell legyen a(z) ''{1}'' alapt\u00edpus minInclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        maxExclusive-valid-restriction.4 = maxExclusive-valid-restriction.4: A maxExclusive \u00e9rt\u00e9k =''{0}'' > kell legyen a(z) ''{1}'' alapt\u00edpus minExclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        maxInclusive-maxExclusive = maxInclusive-maxExclusive: Hiba, ha mind a maxInclusive mind a maxExclusive \u00e9rt\u00e9keket megadja ugyanahhoz az adatt\u00edpushoz.
        maxInclusive-valid-restriction.1 = maxInclusive-valid-restriction.1: A maxInclusive \u00e9rt\u00e9k =''{0}'' <= kell legyen a(z) ''{1}'' alapt\u00edpus maxInclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        maxInclusive-valid-restriction.2 = maxInclusive-valid-restriction.2: A maxInclusive \u00e9rt\u00e9k =''{0}'' < kell legyen a(z) ''{1}'' alapt\u00edpus maxExclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        maxInclusive-valid-restriction.3 = maxInclusive-valid-restriction.3: A maxInclusive \u00e9rt\u00e9k =''{0}'' >= kell legyen a(z) ''{1}'' alapt\u00edpus minInclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        maxInclusive-valid-restriction.4 = maxInclusive-valid-restriction.4: A maxInclusive \u00e9rt\u00e9k =''{0}'' > kell legyen a(z) ''{1}'' alapt\u00edpus minExclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        maxLength-valid-restriction = maxLength-valid-restriction: A maxLength \u00e9rt\u00e9k = ''{0}'' <= kell legyen a(z) ''{1}'' alapt\u00edpus\u00e9n\u00e1l.
        mgd-props-correct = mgd-props-correct: hiba.
        mg-props-correct = mg-props-correct: hiba.
        minExclusive-less-than-equal-to-maxExclusive = minExclusive-less-than-equal-to-maxExclusive: A minExclusive \u00e9rt\u00e9k = ''{0}'' <= kell legyen a maxExclusive \u00e9rt\u00e9kn\u00e9l = ''{1}''.
        minExclusive-less-than-maxInclusive = minExclusive-less-than-maxInclusive: A minExclusive \u00e9rt\u00e9k = ''{0}'' < kell legyen a maxInclusive \u00e9rt\u00e9kn\u00e9l = ''{1}''.
        minExclusive-valid-restriction.1 = minExclusive-valid-restriction.1: A minExclusive \u00e9rt\u00e9k =''{0}'' >= kell legyen a(z) ''{1}'' alapt\u00edpus minExclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        minExclusive-valid-restriction.2 = minExclusive-valid-restriction.2: A minExclusive \u00e9rt\u00e9k =''{0}'' <= kell legyen a(z) ''{1}'' alapt\u00edpus maxInclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        minExclusive-valid-restriction.3 = minExclusive-valid-restriction.3: A minExclusive \u00e9rt\u00e9k =''{0}'' >= kell legyn a(z) ''{1}'' alapt\u00edpus minInclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        minExclusive-valid-restriction.4 = minExclusive-valid-restriction.4: A minExclusive \u00e9rt\u00e9k =''{0}'' < kell legyen a(z) ''{1}'' alapt\u00edpus maxExclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        minInclusive-less-than-equal-to-maxInclusive = minInclusive-less-than-equal-to-maxInclusive: A minInclusive \u00e9rt\u00e9k = ''{0}'' <= kell legyen a maxInclusive \u00e9rt\u00e9kn\u00e9l = ''{1}''.
        minInclusive-less-than-maxExclusive = minInclusive-less-than-maxExclusive: A minInclusive \u00e9rt\u00e9k = ''{0}'' < kell legyen a maxExclusive \u00e9rt\u00e9kn\u00e9l = ''{1}''.
        minInclusive-minExclusive = minInclusive-minExclusive: Hiba, ha megadja mind a minInclusive mind a minExclusive \u00e9rt\u00e9ket ugyanahhoz az adatt\u00edpushoz.
        minInclusive-valid-restriction.1 = minInclusive-valid-restriction.1: A minInclusive \u00e9rt\u00e9k =''{0}'' >= kell legyen a(z) ''{1}'' alapt\u00edpus minInclusive \u00e9rt\u00e9k\u00e9n\u00e9l.
        minInclusive-valid-restriction.2 = minInclusive-valid-restriction.2: A minInclusive \u00e9rt\u00e9k =''{0}'' <= kell legyen a(z) ''{1}'' alapt\u00edpus maxInclusive \u00e9rt\u00e9k\u00e9n\u00e9l.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -