📄 msm6100_code.scp
字号:
;============================================================================
; Name:
; MSM6100.SCP
;
; Description:
; Script file for AIJI system OpeniceA900
;
; Execution:
; Modify the command line load file.elf(axf) to load the file that you want.
; For more details, refer to SCP.txt file that accompanies this.
;
; Copyright (c) 2003,2004 by AIJI system, Incorporated. All Rights Reserved.
;----------------------------------------------------------------------------
;============================================================================
;
; EDIT HISTORY FOR MODULE
;
;
; when who what, where, why
; ------- --- ----------------------------------------------------
; 08/27/2003 AIJI initial release
;============================================================================;
Target.disconnect
;remote environmemt
comm.channel usb
;Debugger environmemt
SYS.JtagClock 5
SYS.SysReset on
SYS.SmuInit off
SYS.Endian Little ;little,Big
SYS.trst on ; off
SYS.rtck on ; off
;SYS.reginit on ; off
SYS.timeinterval 500 ; 500 millisecond
;============================================================================;
;Processor
P.Auto
//P.Manual ARM926EJ
P.INDEX 1
P.MCUNAME MSM6100 ;dev filename
;============================================================================;
Target.connect
// register set
// MSM_CLK_HALT
mem.write 0x80001600 0x0 4
/////////// setup MPMC ///////////////////
; Set GPIOs to support SDRAM
; GPIO32 to A1(0)/A1(24)
// GPIO_PAGE
mem.write 0x80001220 0x20 1
// GPIO_CFG
mem.write 0x80001224 0x4 1
; GPIO31 to A1(0)/A1(23)
// GPIO_PAGE
mem.write 0x80001220 0x1F 1
// GPIO_CFG
mem.write 0x80001224 0x4 1
; Setup GPIO77 to enable SDRAM_CS
// GPIO_PAGE
mem.write 0x80001220 0x4d 1
// GPIO_CFG
mem.write 0x80001224 0x4 1
;EBI1_MPMC_STDY_SEL, configures static or dynamic memory on RAMCS2 and RAMCS3
; beforehand, enable chip select two to be SDRAM
mem.write 0x600000A8 0x1 4
; setup EBI1_CFG for clock invert on SDRAM clk (bit 9), Power mgmt functions, and
; hclk debug enable
; this register will have to be reset when clock runs faster than TCXO
mem.write 0x600000A0 0x280 4
; ***** ARM TRM Step 1.
wait 100
; this next step just to protect the rest of the system from behavior during configuration
; Control: Enable MPMC, no mirroring, not low power mode, drain write buffers = 8
mem.write 0x63800000 0x00000009 4
wait 10
; control: set normal memory map, after drain buffers done, enable MPMC.
mem.write 0x63800000 0x00000001 4
; Config: 1:1 HCLK-MPMCCLK ratio, little endian formats = 0
// MPMCConfig
mem.write 0x63800008 0x00000000 4
; Clear the Static memory config for the MPMC
// MPMCStaticConfig0
mem.write 0x63800200 0x81 4
; Clear the Static memory config for the MPMC
// MPMCStaticConfig1
mem.write 0x63800220 0x81 4
; Clear the Static memory config for the MPMC
// MPMCStaticConfig2
mem.write 0x63800240 0x81 4
; Clear the Static memory config for the MPMC
// MPMCStaticConfig3
mem.write 0x63800260 0x81 4
; SetupMPMC: memory controller was XMEMC--setting to MPMC
// EBI1_MEM_CTLR_SEL_CMD
mem.write 0x600000D0 0x0 1
wait 10
; DynamicControl: set clocks always clocking and enabled
// MPMCDynamicControl
mem.write 0x63800020 0x3 4
; DynamicRefresh: set refresh interval, to be the clock rate in MHz, rounded down
; See the ARM reference to convince yourself that this is right.
// MPMCDynamicRefresh
mem.write 0x63800024 0x2 4
; tRP: Precharge Command period
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 1
// MPMCDynamictRP
mem.write 0x63800030 0x0 4
; tRAS: Active to Precharge Command period
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 2
// MPMCDynamictRAS
mem.write 0x63800034 0x1 4
; tSREX: Self-refresh exit time
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 3
// MPMCDynamictSREX
mem.write 0x63800038 0x2 4
; tAPR: last-data-out to active command time
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 3
// MPMCDynamictAPR
mem.write 0x6380003C 0x2 4
; tDAL: Data-in to active command time (or tAPW)
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 7
// MPMCDynamictDAL
mem.write 0x63800040 0x6 4
; tWR: Write recovery time (or tDPL or tRWL or tRDL)
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 2
// MPMCDynamictWR
mem.write 0x63800044 0x1 4
; tRC: Active to active command period
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 3
// MPMCDynamictRC
mem.write 0x63800048 0x2 4
; tRFC: Auto refresh period and auto refresh to active command period (or sometimes tRC)
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 3
// MPMCDynamictRFC
mem.write 0x6380004C 0x2 4
; tXSR: exit self-refresh to active command time
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 3
// MPMCDynamictXSR
mem.write 0x63800050 0x2 4
; tRRD: Active bank A to active bank B latency
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 1
// MPMCDynamictRRD
mem.write 0x63800054 0x0 4
; tMRD: load mode register to active command time (or tRSA)
; is n+1 HCLK cycles. Enter value in nanosecs from data sheet here
; clkcycles 2
// MPMCDynamictMRD
mem.write 0x63800058 0x1 4
; DynamicControl: issue a nop to the MPMC
// MPMCDynamicControl
mem.write 0x63800020 0x183 4
wait 1
; ***** ARM TRM Step 2.
; DynamicControl: issue a Precharge All to the MPMC
mem.write 0x63800020 0x103 4
; ***** ARM TRM Step 3.
; DynamicRefresh: set up the refresh and wait for 8 refresh cycles have occurred
; The value 2 is magically chosen by ARM
mem.write 0x63800024 0x2 4
; ***** ARM TRM Step 4.
; a little overkill here: the value of 10.ms is enough to delay 256 cycles at the 32khz sleep clock
; For TCXO, it only needs to be 20.us. I doubt anyone will mind the extra 9+ milliseconds of delay
wait 10
; ***** ARM TRM Step 5.
; DynamicRefresh: set refresh interval, to be the clock rate in MHz, rounded down
; ARM subtracts a margin of about 3% -- can't argue with this.
; See the ARM reference to convince yourself that this is right.
; HCLK_RATE=19.2 Mhz
; REFRESH_CYCLES=(HCLK_RATE/1000000.)*0.97
mem.write 0x63800024 0x12 4
; ***** ARM TRM Steps 6,7.
;
; set the RAS and CAS latencies (two clocks each == 0x202)
; then set the DynamicConfig register
; set 01 into bits 29:28 to specify a 12-bit row width
; Set bit 26 to indicate 4 banks/device
; Set 011 into bits 24:22 to specify a 9-bit col width
; set 01 into bits 4:3 to indicate LP-SDRAM memory device type
; the bits above equal 0x14C00008
; set bits 14, 12:7 to reflect address mapping for memory part:
; -- see each specific section below for the value
; beware, when SDRAM parts or sizes change, these have to change!
; 128-Mbit LP-SDRAM, 8Mx16 gets bits 12, 10, 7 set
; these bits = 0x1480
// MPMCDynamicRasCas0
mem.write 0x63800104 0x00000202 4
// MPMCDynamicConfig0
mem.write 0x63800100 0x14C01488 4
; ***** ARM TRM Step 8.
; DynamicControl: put the MPMC into Mode setting state
mem.write 0x63800020 0x00000080 4
; ***** ARM TRM Step 9.
; load the Memory Parts' mode register
; Per the ARM TRM, this is a little confusing:
; We read from an SDRAM address: The read action programs the device,
; and the address read indicates the configuration.
; Per the ARM PL172 TRM,
; A[2:0] = burst length (8 for 16-bit wide bus, 4 for 32-bit wide)
; A[3] = 0 (sequential burst type)
; A[6:4] = 010 (CAS latency = 2 for our timing)
; A[11:7] = 00000 (Operating mode= standard operation)
; this yields a value of 0x23 for 16-bit. Then there is a confusing
; lookup for (16-bit, 128Mb, 8Mx16 SDRAM) on page 6-49 (equiv to 10-bit left shift)
; to get the value of 0x00008C00 as the address to read from.
;
; for our 32-bit SDRAM, 8Mx32 (two 8Mx16s), the values yield 0x22 for 32-bit.
; After lookup (euqal to shift 10 bits left), the value is 0x00008800
; write at this address offset from bottom of the device.
;&mode_reg_val=&mode_reg_val+&EBI1_SDRAM_BASE_ADDR // 0x0
;d.in &mode_reg_val
mem.read 0x8c00, 1
; ***** ARM TRM Step 10.
; load the Memory Parts' extended mode register
; this register sets partial-array self refresh and also the temp compensated self refresh
; these values are fixed as far as we are concerned for now.
;&mode_reg_val=0x00800000
;&mode_reg_val=&mode_reg_val+&EBI1_SDRAM_BASE_ADDR
;d.in &mode_reg_val
;mem.read 0x800000, 1
; ***** ARM TRM Step 11.
; DynamicControl: put the MPMC Control into Normal mode
// MPMCDynamicControl
mem.write 0x63800020 0x00000003 4
; ***** ARM TRM Step 12.
; enable buffers for the first chip select
// MPMCDynamicConfig0
mem.write 0x63800100 0x14C81488 4
; set the clocks to run continuously, enabled during all times
// MPMCDynamicControl
mem.write 0x63800020 0x00000003 4
//** This script sets up MSM6100/MSM6300's EBI2 **
; setup EBI2_CFG, set for NAND flash enable and ARM priority
mem.write 0x600000E0 0x02 4
;GPn_CFG0, RAM2_CFG0, ROM2_CFG0, configures timing
// GP0_CFG0
mem.write 0x600000E4 0x03111122 4
// GP1_CFG0
mem.write 0x600000EC 0x03111122 4
// RAM2_CFG0
mem.write 0x600000F4 0x03111122 4
// ROM2_CFG0
mem.write 0x600000FC 0x03111122 4
;EBI1_CSn_CFG1, configures bus sizing and write protect
// GP0_CFG1 ;ram is 16 bit device and user can write memory
mem.write 0x600000E4 0x00 1
// GP1_CFG1
mem.write 0x600000EC 0x0 1
// RAM2_CFG1
mem.write 0x600000F4 0x00 1
// ROM2_CFG1
mem.write 0x600000FC 0x00 1
; LCD setup
// LCD_CFG0
mem.write 0x60000104 0x77770807 4
// LCD_CFG1
mem.write 0x60000108 0x00 4
; Setup GPIO2 bridge to uP (setup, hold times)
// GPIO2_ACCESS_CFG
mem.write 0x60000088 0x00 4
;
;
; Setup the GPIOs so that are needed for EBI2
;
; Set GPIO35 to support happy LEDs (GP_CS0)
// GPIO_PAGE
mem.write 0x80001220 0x23 1
// GPIO_CFG
mem.write 0x80001224 0x4 1
; Setup GPIO78 to enable A2(20), the 20th bit of EBI2 address
// GPIO_PAGE
mem.write 0x80001220 0x4E 1
// GPIO_CFG
mem.write 0x80001224 0x4 1
; Set GPIO36 to support mainboard NOR flash device (rom2_cs_n)
// GPIO_PAGE
mem.write 0x80001220 0x24 1
// GPIO_CFG
mem.write 0x80001224 0x4 1
; Set GPIO67 to support SRAM on RAM2_CS on EBI2
// GPIO_PAGE
mem.write 0x80001220 0x43 1
// GPIO_CFG
mem.write 0x80001224 0x4 1
;--------------------------------------------------------------------------
; NAND Setup
;--------------------------------------------------------------------------
; Setup GPIO 33 so that NAND_ROM2_CS is setup (NAND flash).
// GPIO_PAGE
mem.write 0x80001220 0x21 1
// GPIO_CFG
mem.write 0x80001224 0x4 1
;Hard reset the NAND Controller
// NAND_FLASH_CMD
mem.write 0x64000300 0x00 4
wait 100
;reset NAND flash controller memory
// NAND_FLASH_CMD
mem.write 0x64000300 0x07 4
wait 100
; enable the NAND bus (EBI2_CFG register)
// EBI2_CFG
mem.write 0x600000e0 0x2 1
wait 2000
;Flash configure
Flash.DownLoad on
Flash.userOption on
F.userfilepath MSM6100.axf
F.Erase sector
F.SectorInfo reset
F.sectorRange 0x000000 - 0xFFFFFF
F.FlashBase 0x000000
F.FlashSize 0x02000000
F.RamBase 0x01F00000
F.RamSize 0x00100000
;loadbin ./msm6100.bin 0x0
;load sntq.elf
loadbin sntq.elf 0x0 ; 捞何盒阑 荐沥秦具 钦聪促. File path & name
Flash.DownLoad off
target.disconnect
target.connect
reg.write pc=0xffff0000
b 0x0000000
go
wait stop
unbreak 0x0
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -