⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ia64.s

📁 C++编写
💻 S
字号:
.explicit.text.ident	"ia64.S, Version 1.1".ident	"IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"//// ====================================================================// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL// project.//// Rights for redistribution and usage in source and binary forms are// granted according to the OpenSSL license. Warranty of any kind is// disclaimed.// ====================================================================//// Q.	How much faster does it get?// A.	Here is the output from 'openssl speed rsa dsa' for vanilla//	0.9.6a compiled with gcc version 2.96 20000731 (Red Hat//	Linux 7.1 2.96-81):////	                  sign    verify    sign/s verify/s//	rsa  512 bits   0.0036s   0.0003s    275.3   2999.2//	rsa 1024 bits   0.0203s   0.0011s     49.3    894.1//	rsa 2048 bits   0.1331s   0.0040s      7.5    250.9//	rsa 4096 bits   0.9270s   0.0147s      1.1     68.1//	                  sign    verify    sign/s verify/s//	dsa  512 bits   0.0035s   0.0043s    288.3    234.8//	dsa 1024 bits   0.0111s   0.0135s     90.0     74.2////	And here is similar output but for this assembler//	implementation:-)////	                  sign    verify    sign/s verify/s//	rsa  512 bits   0.0021s   0.0001s    549.4   9638.5//	rsa 1024 bits   0.0055s   0.0002s    183.8   4481.1//	rsa 2048 bits   0.0244s   0.0006s     41.4   1726.3//	rsa 4096 bits   0.1295s   0.0018s      7.7    561.5//	                  sign    verify    sign/s verify/s//	dsa  512 bits   0.0012s   0.0013s    891.9    756.6//	dsa 1024 bits   0.0023s   0.0028s    440.4    376.2//	//	Yes, you may argue that it's not fair comparison as it's//	possible to craft the C implementation with BN_UMULT_HIGH//	inline assembler macro. But of course! Here is the output//	with the macro:////	                  sign    verify    sign/s verify/s//	rsa  512 bits   0.0020s   0.0002s    495.0   6561.0//	rsa 1024 bits   0.0086s   0.0004s    116.2   2235.7//	rsa 2048 bits   0.0519s   0.0015s     19.3    667.3//	rsa 4096 bits   0.3464s   0.0053s      2.9    187.7//	                  sign    verify    sign/s verify/s//	dsa  512 bits   0.0016s   0.0020s    613.1    510.5//	dsa 1024 bits   0.0045s   0.0054s    221.0    183.9////	My code is still way faster, huh:-) And I believe that even//	higher performance can be achieved. Note that as keys get//	longer, performance gain is larger. Why? According to the//	profiler there is another player in the field, namely//	BN_from_montgomery consuming larger and larger portion of CPU//	time as keysize decreases. I therefore consider putting effort//	to assembler implementation of the following routine:////	void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)//	{//	int      i,j;//	BN_ULONG v;////	for (i=0; i<nl; i++)//		{//		v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);//		nrp++;//		rp++;//		if (((nrp[-1]+=v)&BN_MASK2) < v)//			for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;//		}//	}////	It might as well be beneficial to implement even combaX//	variants, as it appears as it can literally unleash the//	performance (see comment section to bn_mul_comba8 below).////	And finally for your reference the output for 0.9.6a compiled//	with SGIcc version 0.01.0-12 (keep in mind that for the moment//	of this writing it's not possible to convince SGIcc to use//	BN_UMULT_HIGH inline assembler macro, yet the code is fast,//	i.e. for a compiler generated one:-):////	                  sign    verify    sign/s verify/s//	rsa  512 bits   0.0022s   0.0002s    452.7   5894.3//	rsa 1024 bits   0.0097s   0.0005s    102.7   2002.9//	rsa 2048 bits   0.0578s   0.0017s     17.3    600.2//	rsa 4096 bits   0.3838s   0.0061s      2.6    164.5//	                  sign    verify    sign/s verify/s//	dsa  512 bits   0.0018s   0.0022s    547.3    459.6//	dsa 1024 bits   0.0051s   0.0062s    196.6    161.3////	Oh! Benchmarks were performed on 733MHz Lion-class Itanium//	system running Redhat Linux 7.1 (very special thanks to Ray//	McCaffity of Williams Communications for providing an account).//// Q.	What's the heck with 'rum 1<<5' at the end of every function?// A.	Well, by clearing the "upper FP registers written" bit of the//	User Mask I want to excuse the kernel from preserving upper//	(f32-f128) FP register bank over process context switch, thus//	minimizing bus bandwidth consumption during the switch (i.e.//	after PKI opration completes and the program is off doing//	something else like bulk symmetric encryption). Having said//	this, I also want to point out that it might be good idea//	to compile the whole toolkit (as well as majority of the//	programs for that matter) with -mfixed-range=f32-f127 command//	line option. No, it doesn't prevent the compiler from writing//	to upper bank, but at least discourages to do so. If you don't//	like the idea you have the option to compile the module with//	-Drum=nop.m in command line.//#if 1//// bn_[add|sub]_words routines.//// Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the// data reside in L1 cache, i.e. 2 ticks away). It's possible to// compress the epilogue and get down to 2*n+6, but at the cost of// scalability (the neat feature of this implementation is that it// shall automagically spin in n+5 on "wider" IA-64 implementations:-)// I consider that the epilogue is short enough as it is to trade tiny// performance loss on Itanium for scalability.//// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)//.global	bn_add_words#.proc	bn_add_words#.align	64.skip	32	// makes the loop body aligned at 64-byte boundarybn_add_words:	.prologue	.fframe	0	.save	ar.pfs,r2{ .mii;	alloc		r2=ar.pfs,4,12,0,16	cmp4.le		p6,p0=r35,r0	};;{ .mfb;	mov		r8=r0			// return value(p6)	br.ret.spnt.many	b0	};;	.save	ar.lc,r3{ .mib;	sub		r10=r35,r0,1	mov		r3=ar.lc	brp.loop.imp	.L_bn_add_words_ctop,.L_bn_add_words_cend-16					}	.body{ .mib;	mov		r14=r32			// rp	mov		r9=pr		};;{ .mii;	mov		r15=r33			// ap	mov		ar.lc=r10	mov		ar.ec=6		}{ .mib;	mov		r16=r34			// bp	mov		pr.rot=1<<16	};;.L_bn_add_words_ctop:{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)	(p18)	add		r39=r37,r34	(p19)	cmp.ltu.unc	p56,p0=r40,r38	}{ .mfb;	(p0)	nop.m		0x0	(p0)	nop.f		0x0	(p0)	nop.b		0x0		}{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)	(p58)	cmp.eq.or	p57,p0=-1,r41	  // (p20)	(p58)	add		r41=1,r41	} // (p20){ .mfb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r	(p0)	nop.f		0x0	br.ctop.sptk	.L_bn_add_words_ctop	};;.L_bn_add_words_cend:{ .mii;(p59)	add		r8=1,r8		// return value	mov		pr=r9,-1	mov		ar.lc=r3	}{ .mbb;	nop.b		0x0	br.ret.sptk.many	b0	};;.endp	bn_add_words#//// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)//.global	bn_sub_words#.proc	bn_sub_words#.align	64.skip	32	// makes the loop body aligned at 64-byte boundarybn_sub_words:	.prologue	.fframe	0	.save	ar.pfs,r2{ .mii;	alloc		r2=ar.pfs,4,12,0,16	cmp4.le		p6,p0=r35,r0	};;{ .mfb;	mov		r8=r0			// return value(p6)	br.ret.spnt.many	b0	};;	.save	ar.lc,r3{ .mib;	sub		r10=r35,r0,1	mov		r3=ar.lc	brp.loop.imp	.L_bn_sub_words_ctop,.L_bn_sub_words_cend-16					}	.body{ .mib;	mov		r14=r32			// rp	mov		r9=pr		};;{ .mii;	mov		r15=r33			// ap	mov		ar.lc=r10	mov		ar.ec=6		}{ .mib;	mov		r16=r34			// bp	mov		pr.rot=1<<16	};;.L_bn_sub_words_ctop:{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)	(p18)	sub		r39=r37,r34	(p19)	cmp.gtu.unc	p56,p0=r40,r38	}{ .mfb;	(p0)	nop.m		0x0	(p0)	nop.f		0x0	(p0)	nop.b		0x0		}{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)	(p58)	cmp.eq.or	p57,p0=0,r41	  // (p20)	(p58)	add		r41=-1,r41	} // (p20){ .mbb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r	(p0)	nop.b		0x0	br.ctop.sptk	.L_bn_sub_words_ctop	};;.L_bn_sub_words_cend:{ .mii;(p59)	add		r8=1,r8		// return value	mov		pr=r9,-1	mov		ar.lc=r3	}{ .mbb;	nop.b		0x0	br.ret.sptk.many	b0	};;.endp	bn_sub_words##endif#if 0#define XMA_TEMPTATION#endif#if 1//// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)//.global	bn_mul_words#.proc	bn_mul_words#.align	64.skip	32	// makes the loop body aligned at 64-byte boundarybn_mul_words:	.prologue	.fframe	0	.save	ar.pfs,r2#ifdef XMA_TEMPTATION{ .mfi;	alloc		r2=ar.pfs,4,0,0,0	};;#else{ .mfi;	alloc		r2=ar.pfs,4,4,0,8	};;#endif{ .mib;	mov		r8=r0			// return value	cmp4.le		p6,p0=r34,r0(p6)	br.ret.spnt.many	b0		};;	.save	ar.lc,r3{ .mii;	sub	r10=r34,r0,1	mov	r3=ar.lc	mov	r9=pr			};;	.body{ .mib;	setf.sig	f8=r35	// w	mov		pr.rot=0x400001<<16			// ------^----- serves as (p48) at first (p26)	brp.loop.imp	.L_bn_mul_words_ctop,.L_bn_mul_words_cend-16					}#ifndef XMA_TEMPTATION{ .mii;	mov		r14=r32	// rp	mov		r15=r33	// ap	mov		ar.lc=r10	}{ .mii;	mov		r39=0	// serves as r33 at first (p26)	mov		ar.ec=12	};;// This loop spins in 2*(n+11) ticks. It's scheduled for data in L2// cache (i.e. 9 ticks away) as floating point load/store instructions// bypass L1 cache and L2 latency is actually best-case scenario for// ldf8. The loop is not scalable and shall run in 2*(n+11) even on// "wider" IA-64 implementations. It's a trade-off here. n+22 loop// would give us ~5% in *overall* performance improvement on "wider"// IA-64, but would hurt Itanium for about same because of longer// epilogue. As it's a matter of few percents in either case I've// chosen to trade the scalability for development time (you can see// this very instruction sequence in bn_mul_add_words loop which in// turn is scalable)..L_bn_mul_words_ctop:{ .mfi;	(p25)	getf.sig	r36=f49			// low	(p21)	xmpy.lu		f45=f37,f8	(p27)	cmp.ltu		p52,p48=r39,r38	}{ .mfi;	(p16)	ldf8		f32=[r15],8	(p21)	xmpy.hu		f38=f37,f8	(p0)	nop.i		0x0		};;{ .mii;	(p26)	getf.sig	r32=f43			// high	.pred.rel	"mutex",p48,p52	(p48)	add		r38=r37,r33		// (p26)	(p52)	add		r38=r37,r33,1	}	// (p26){ .mfb;	(p27)	st8		[r14]=r39,8	(p0)	nop.f		0x0	br.ctop.sptk	.L_bn_mul_words_ctop	};;.L_bn_mul_words_cend:{ .mii;	nop.m		0x0.pred.rel	"mutex",p49,p53(p49)	add		r8=r34,r0(p53)	add		r8=r34,r0,1	}{ .mfb;	nop.m	0x0	nop.f	0x0	nop.b	0x0			}#else	// XMA_TEMPTATION	setf.sig	f37=r0	// serves as carry at (p18) tick	mov		ar.lc=r10	mov		ar.ec=5;;// Most of you examining this code very likely wonder why in the name// of Intel the following loop is commented out? Indeed, it looks so// neat that you find it hard to believe that it's something wrong// with it, right? The catch is that every iteration depends on the// result from previous one and the latter isn't available instantly.// The loop therefore spins at the latency of xma minus 1, or in other// words at 6*(n+4) ticks:-( Compare to the "production" loop above// that runs in 2*(n+11) where the low latency problem is worked around// by moving the dependency to one-tick latent interger ALU. Note that// "distance" between ldf8 and xma is not latency of ldf8, but the// *difference* between xma and ldf8 latencies..L_bn_mul_words_ctop:{ .mfi;	(p16)	ldf8		f32=[r33],8	(p18)	xma.hu		f38=f34,f8,f39	}{ .mfb;	(p20)	stf8		[r32]=f37,8	(p18)	xma.lu		f35=f34,f8,f39	br.ctop.sptk	.L_bn_mul_words_ctop	};;.L_bn_mul_words_cend:	getf.sig	r8=f41		// the return value#endif	// XMA_TEMPTATION{ .mii;	nop.m		0x0	mov		pr=r9,-1	mov		ar.lc=r3	}{ .mfb;	rum		1<<5		// clear um.mfh	nop.f		0x0	br.ret.sptk.many	b0	};;.endp	bn_mul_words##endif#if 1//// BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)//.global	bn_mul_add_words#.proc	bn_mul_add_words#.align	64//.skip	0	// makes the loop split at 64-byte boundarybn_mul_add_words:	.prologue	.fframe	0	.save	ar.pfs,r2{ .mii;	alloc		r2=ar.pfs,4,12,0,16	cmp4.le		p6,p0=r34,r0	};;{ .mfb;	mov		r8=r0			// return value(p6)	br.ret.spnt.many	b0	};;	.save	ar.lc,r3{ .mii;	sub	r10=r34,r0,1	mov	r3=ar.lc	mov	r9=pr			};;	.body{ .mib;	setf.sig	f8=r35	// w	mov		pr.rot=0x400001<<16			// ------^----- serves as (p48) at first (p26)	brp.loop.imp	.L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16					}{ .mii;	mov		r14=r32	// rp	mov		r15=r33	// ap	mov		ar.lc=r10	}{ .mii;	mov		r39=0	// serves as r33 at first (p26)	mov		r18=r32	// rp copy	mov		ar.ec=14	};;// This loop spins in 3*(n+13) ticks on Itanium and should spin in// 2*(n+13) on "wider" IA-64 implementations (to be verified with new// 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -