📄 invindex.tex
字号:
146: divides exactly146: divides exactly\sub in factorials146: exactly divides146: exactly divides\sub in factorials146: nu function: sum of digits\sub other radices146: pi ($\approx3.14159$\sub Stern--Brocot representation of146: ruler function146: sideways addition147: Euclid (= xxx)147: Euclid\sub numbers147: Euler\sub pronunciation of name147: Euler\sub theorem147: algebraic integers147: divisibility\sub by~$3$147: inverse modulo $m$147: prime algebraic integers147: quadratic domain147: unique factorization147: unit148: Fermat's theorem (= Fermat's Little Theorem)\sub converse of148: Ketcham, Henry King148: LeChiffre, Mark Well148: Stern--Brocot tree148: Wilson148: Wilson, Martha148: baseball148: primality testing148: ruler function149: Fermat's theorem (= Fermat's Little Theorem)149: M\"obius\sub function149: complex numbers\sub roots of unity149: cyclotomic polynomials149: multinomial theorem149: polynomials\sub cyclotomic149: roots of unity149: superfactorials150--151: gaps between primes150--151: prime numbers\sub gaps between150: $e$ ($\approx2.71828$)\sub representations of150: Egyptian mathematics150: Euclid\sub numbers150: Farey\sub consecutive elements of150: Fermat's Last Theorem150: Stern--Brocot number system\sub representation of $e$150: fractions\sub unit150: totient function\sub summation of150: unit fractions151: Euclid\sub numbers151: Mersenne\sub numbers151: Peirce\sub sequence151: fractions\sub unreduced151: phi function\sub divisibility by151: squarefree151: totient function\sub divisibility by152: Farey\sub distribution of152: uniformity, deviation from153--242: binomial coefficients153: binomial coefficients\sub combinatorial interpretation153: combinations153: counting\sub combinations154: binomial coefficients\sub definition154: binomial coefficients\sub indices of154: lower index of binomial coefficient154: notation\sub extension of154: traps154: upper index of binomial coefficient155--156: Pascal's triangle\sub hexagon property155--156: hexagon property155: Pascal's triangle155: Pascal, Blaise155: Tartaglia, Nicol\`o, triangle155: small cases155: triangular numbers156--157: symmetry identities\sub for binomial coefficients156: Pascal156: factorial expansion of binomial coefficients157--158: absorption identities157: sandwiching157: traps158--159: addition formula for ${n\choose k}_{\mathstrut}$158--159: binomial coefficients\sub addition formula158: binomial coefficients\sub combinatorial interpretation158: cheating\sub not158: eggs158: polynomial argument158: polynomials\sub degree of159--160: recurrences\sub unfolding159--160: unfolding a recurrence159: boundary conditions on sums\sub made easier159: parallel summation159: summation\sub parallel159: zero160--161: summation\sub on the upper index160--161: upper summation160: binomial coefficients\sub combinatorial interpretation161: indefinite summation\sub of binomial coefficients162--163: binomial theorem162: $0^0$162: Doyle, Sir Arthur Conan162: Holmes, Thomas Sherlock Scott162: Moriarty, James163: Pascal's triangle\sub row sums163: Taylor, Brook, series163: binomial theorem\sub special cases163: polynomial argument164--165: negating the upper index164--165: upper negation164: Pascal's triangle\sub extended upward164: mnemonics164: pneumathics165--166: Pascal's triangle\sub row sums165--166: hypergeometric series\sub partial sums of165: sandwiching166: clich\'es166: error function167: unexpected sum168: Leibniz168: multinomial coefficients168: multinomial theorem168: trinomial coefficients168: trinomial theorem169--170: Vandermonde's convolution169--170: Vandermonde's convolution\sub combinatorial interpretation169--170: binomial coefficients\sub combinatorial interpretation169: Chu Shih-Chieh [= Zh\=u Sh\`{\i}ji\'e]169: Vandermonde, Alexandre Th\'eophile170: philosophy171--172: multinomial coefficients171: Dougall, John171: trinomial coefficients172: Dyson, Freeman John173: BASIC173: Dijkstra, Edsger Wybe173: goto, considered harmful174: binomial coefficients\sub top ten identities of174: parallel summation174: summation\sub parallel175--176: summation\sub on the upper index175: Youngman, Henry (= Henny)175: merging175: notation\sub ghastly175: referee175: sorting\sub merge sort176: upper summation179: periodic recurrences179: perturbation method179: recurrences\sub periodic180: squares180: sums\sub of consecutive squares181: Catalan numbers\sub in sums181: difficulty measure for summation181: philosophy181: summation\sub difficulty measure for182: football183--185: double sums\sub considered useful183: binary search183: errors, locating our own183: interchanging the order of summation183: summation\sub interchanging the order of183: symmetry identities\sub for binomial coefficients183: traps185: interchanging the order of summation185: summation\sub interchanging the order of186--187: halving186: duplication formulas186: product of consecutive odd numbers187--192: difference operator\sub $n$th difference187: Vandermonde's convolution\sub with half-integers187: binomial coefficients\sub middle188--189: binomial coefficients\sub reciprocal of188: $E$: shift operator188: falling factorial powers\sub difference of188: falling factorial powers\sub negative188: negative factorial powers188: operators\sub equations of188: shift operator\sub binomial theorems for189--191: polynomials\sub Newton series for189--192: Newton\sub series189: Newton, Sir Isaac189: partial fraction expansions\sub of $1/x{x+n\choose n}$189: polynomials191--192: interpolation191: $E$: shift operator191: Taylor191: operators\sub equations of191: shift operator\sub binomial theorems for192--196: inversion formulas\sub for binomial coefficients192: Stirling, James192: factorial function\sub generalized to nonintegers192: generalized factorial function193--194: recurrences\sub implicit193--195: implicit recurrences193--196: counting\sub derangements193--196: football victory problem193--196: permutations\sub fixed points in193: fans193: inversion formulas194--196: derangements194--196: subfactorial194--200: $\?$: subfactorial194: philosophy195--196: triangular numbers195: Boggs, Wade Anthony195: Cobb, Tyrus Raymond195: Stirling195: baseball195: cheating195: lies, and statistics195: nearest integer\sub rounding to195: probability195: radix notation195: rounding to nearest integer196--204: generating functions196: analytic functions196: holomorphic functions196: power series197: bracket notation\sub for coefficients197: coefficient extraction197: convolution197: generating functions\sub for convolutions198: Vandermonde's convolution\sub derived from generating functions199--200: counting\sub derangements199--200: derangements\sub generating function199--200: football victory problem199: binomial theorem\sub special cases200--202: exponential series, generalized200--202: generalized exponential series200--204: binomial series, generalized200--204: generalized binomial series201--202: Vandermonde's convolution\sub generalized201: Lambert, Johann Heinrich202: Eisenstein, Ferdinand Gotthold Max202: Euler202: convolution\sub identities for203: Catalan numbers203: Catalan numbers\sub in sums203: Catalan numbers\sub table of203: Catalan, Eug\`ene Charles204--223: hypergeometric series204: complex numbers\sub roots of unity204: roots of unity205--206: geometric progression\sub generalized205: Euler205: Gau{\ss} (= Gauss)205: Riemann, Georg Friedrich Bernhard205: argument of hypergeometric205: lower parameters of hypergeometric series205: upper parameters of hypergeometric series206: Bessel, Friedrich Wilhelm, functions206: Kummer, Ernst Eduard206: binomial theorem\sub as hypergeometric series206: confluent hypergeometric series206: convergence\sub of power series206: formal power series206: hypergeometric series\sub confluent206: power series\sub formal207--208: rational functions207--209: term ratio207: Euler207: Fundamental Theorem of Algebra207: Gau{\ss} (= Gauss)207: Gau{\ss} (= Gauss)\sub hypergeometric series207: Pfaff, Johann Friedrich207: Sawyer, Walter Warwick207: hypergeometric series\sub Gaussian208--210: parallel summation208--210: summation\sub parallel209--210: degenerate hypergeometric series209--210: hypergeometric series\sub degenerate210--211: factorial function\sub generalized to nonintegers210--211: generalized factorial function210--211: notation\sub extension of210--214: Gamma function210: Euler210: Stirling210: polynomial argument\sub opposite of211--212: term ratio211--213: Vandermonde's convolution\sub as a hypergeometric series211: binomial coefficients\sub definition211: binomial coefficients\sub generalized211: complex factorial powers211: duality\sub between factorial and Gamma functions211: factorial expansion of binomial coefficients211: falling factorial powers\sub complex211: generalized binomial coefficients211: lower index of binomial coefficient\sub complex valued211: rising factorial powers\sub complex212: $\Re$: real part212: Gau{\ss} (= Gauss)212: real part213--214: factorial function\sub generalized to nonintegers213--214: generalized factorial function213: Kummer\sub formula for hypergeometrics214--215: Saalsch\"utz\sub identity214: Dixon\sub formula214: Pfaff214: Saalsch\"utz, Louis215--216: unexpected sum215: Andrews, George W. Eyre216--223: hypergeometric series\sub transformations of216: degenerate hypergeometric series216: hypergeometric series\sub degenerate217: Kummer\sub formula for hypergeometrics217: Pfaff217: Pfaff\sub reflection law217: reflection law for hypergeometrics218--219: Vandermonde's convolution\sub generalized219--221: $\vartheta$219--221: derivative operator\sub with hypergeometric series219--221: hypergeometric series\sub differential equation for219--221: theta operator219: \TeX219: operators\sub theta ($\vartheta$)220: puns221: binomial theorem\sub as hypergeometric series222: Gau{\ss} (= Gauss)\sub identity for hypergeometrics222: degenerate hypergeometric series222: hypergeometric series\sub degenerate222: traps223--224: indefinite summation\sub of binomial coefficients223--230: hypergeometric series\sub partial sums of223: Bailey, Wilfrid Norman223: Gasper, George, Jr.223: Rahman, Mizanur223: reference books223: useless identity224--225: term ratio224--226: rational functions224--227: Gosper\sub algorithm224--227: algorithms\sub Gosper's224--229: indefinite summation\sub of hypergeometric terms224--229: summation\sub in hypergeometric terms224: Gosper, Ralph William, Jr.224: hypergeometric series\sub partial sums of224: hypergeometric terms224: term\sub hypergeometric225: divisibility\sub of polynomials225: polynomials\sub divisibility of226: deg226: polynomials\sub degree of227--229: Gosper\sub algorithm, examples228--229: Doyle228--229: Holmes229--231: Zeilberger229--241: Gosper-Zeilberger algorithm229--241: algorithms\sub Gosper-Zeilberger229--241: summation\sub definite229--241: summation\sub mechanical229: Petkov\v{s}ek, Marko229: Watson, John Hamish230--233: binomial theorem\sub discovered mechanically230: thinking\sub not at all232: deg232: telescoping233: Gosper-Zeilberger algorithm\sub summary234--235: Saalsch\"utz\sub identity234--235: perspiration234: Vandermonde's convolution\sub derived mechanically234: art and science234: science and art235: leading coefficient236: summation\sub factors236: telescoping236: unexpected sum238--239: Ap\'ery\sub numbers238: Ap\'ery, Roger238: Cohen, Henri Jos\'e238: Riemann's zeta function\sub evaluated at integers238: Zagier, Don Bernard238: Zeilberger238: irrational numbers238: zeta function\sub evaluated at integers239--241: proper terms239: Dyson239: Littlewood, John Edensor239: homogeneous linear equations240: Wilf240: Zeilberger240: base term240: linear difference operators240: operators\sub shift ($E$, $K$, $N$)240: shift operator241: $\Delta$: difference operator241: Wilf241: Zeilberger241: difference operator241: operators\sub equations of242: Pascal's triangle\sub hexagon property242: exponential series242: generalized exponential series242: hexagon property243: Pascal's triangle\sub row products243: binomial series243: bloopergeometric series243: generalized binomial series243: hyperfactorial243: hypergeometric terms243: superfactorials243: term\sub hypergeometric244: $\pi$ ($\approx3.14159$)244: Euler\sub identity for hypergeometrics244: duplication formulas244: factorial function\sub duplication formula245: $\sum$-notation245: Gosper\sub algorithm, examples245: Sigma-notation\sub ambiguity of245: ambiguous notation245: binomial number system245: binomial theorem\sub for factorial powers245: carries\sub in divisibility of $m+n\choose m$245: confluent hypergeometric series245: divides exactly\sub in binomial coefficients245: exactly divides\sub in binomial coefficients245: falling factorial powers\sub binomial theorem for245: hypergeometric series\sub confluent245: hypergeometric series\sub partial sums of245: hypergeometric terms245: number system\sub binomial245: radix notation\sub related to prime factors245: rising factorial powers\sub binomial theorem for245: squares245: sums\sub of consecutive squares245: term\sub hypergeometric
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -