📄 invindex.tex
字号:
64: infinite sums 64: partial fraction expansions\sub for easy summation and differentiation 64: perturbation method 64: product notation 64: real part 64: summation\sub factors 64: summation\sub infinite 64: sums\sub absolutely convergent 64: sums\sub infinite 65: $\bigwedge$-notation 65: Riemann's zeta function 65: cribbage 65: double sums\sub faulty use of 65: greatest lower bound 65: minimum 65: sums\sub of consecutive integers 65: zeta function 66: Acton, John Emerich Edward Dalberg, Baron 66: Goldbach\sub theorem 66: Golomb\sub self-describing sequence 66: perfect powers 66: self-describing sequence 67--69: ceiling function 67--69: floor function 67: INT function 67: Iverson 67: calculators 67: notation\sub ghastly 67: pocket calculators 68--69: duality\sub between floors and ceilings 68: $\Longleftrightarrow$: if and only if 68: Iverson\sub convention 68: ceiling function\sub converted to floor 68: ceiling function\sub graph of 68: floor function\sub converted to ceiling 68: floor function\sub graph of 68: graphs of functions\sub floor and ceiling 69: duality 70: $\phi$ ($\approx1.61803$): golden ratio 70: $\pi$ ($\approx3.14159$) 70: $e$ ($\approx2.71828$)\sub as canonical constant 70: Reingold, Edward Martin 70: binary logarithm 70: binary notation (radix~$2$) 70: carries\sub across the decimal point 70: fractional parts 70: integer part 70: lg: binary logarithm 70: logarithms\sub binary 70: phi ($\approx1.61803$)\sub as canonical constant 70: pi ($\approx3.14159$\sub as canonical constant 70: radix notation\sub length of 71--72: prove or disprove 71: $\Longrightarrow$: implies 71: McEliece, Robert James 71: philosophy 71: skepticism 72--73: exercises 72--73: levels of problems 72--73: problems 72--73: properties 72: Einstein, Albert 72: necessary and sufficient conditions 72: philosophy 73--74: $\dts\,$: interval notation 73--74: closed interval 73--74: counting\sub integers in intervals 73--74: half-open interval 73--74: intervals 73--74: open interval 73: Hoare 73: Ramshaw, Lyle Harold 73: Toledo, Ohio 73: baseball 74--76: roulette wheel 74: Colombo, Cristoforo (= Columbus, Christopher) 74: Concrete Math Club 74: Murphy's Law 74: greed 74: mnemonics 74: wheel 75: Iverson\sub convention 75: boundary conditions on sums\sub can be difficult 75: philosophy 75: vocabulary 75: wheel\sub big 76: $O$-notation 76: Big Oh notation 76: asymptotics\sub of wheel winners 76: asymptotics\sub usefulness of 77--78: partitions, of the integers 77--78: spectra 77: Rayleigh, John William Strutt, 3rd Baron 77: calculators 77: irrational numbers\sub spectra of 77: multisets 77: pocket calculators 78--81: recurrences\sub floor/ceiling 78: Knuth\sub numbers 79--81: Josephus\sub problem 79--81: Josephus\sub recurrence 79: algorithms\sub divide and conquer 79: divide and conquer 79: halving 79: merging 79: sorting\sub merge sort 80: Armstrong, Daniel Louis (= Satchmo) 81--82: remainder after division 81--85: mod: binary operation 81: Josephus\sub numbers 81: Odlyzko, Andrew Michael 81: Wilf, Herbert Saul 81: quotient 82--83: mod $0$ 82: modulus 83--85: distribution\sub of things into groups 83--85: partition into nearly equal parts 83: distributive law\sub for mod 83: fractional parts\sub related to mod 83: mumble function 83: notation\sub need for new 84: mumble function 85: Armageddon 85: war 86--94: sums\sub floor/ceiling 86: boundary conditions on sums\sub can be difficult 87--89: summation\sub asymptotic 87: Bohl, Piers Paul Felix [= Bol', Pirs Georgievich] 87: Sierpi\'nski, Wac{\l}aw 87: Weyl, Claus Hugo Hermann 87: distribution\sub of fractional parts 87: fractional parts\sub uniformly distributed 87: step functions 88--89: discrepancy 88: mumble function 88: name and conquer 89--94: arithmetic progression\sub floored 91: Whitehead, Alfred North 91: philosophy 92: greatest common divisor 94: Mathews 94: Seaver 94: reciprocity law 95: "self reference" 95: Dirichlet\sub box principle 95: Egyptian mathematics 95: Fibonacci, Leonardo 95: Fibonacci\sub algorithm 95: Josephus\sub problem 95: algorithms\sub Fibonacci's 95: box principle 95: downward generalization 95: exercises 95: fractions\sub unit 95: generalization\sub downward 95: levels of problems 95: nearest integer 95: problems 95: rounding to nearest integer 95: unit fractions 96: ceiling function\sub converted to floor 96: duality\sub between floors and ceilings 96: floor function\sub converted to ceiling 96: irrational numbers\sub spectra of 96: open interval 96: partitions 96: spectra 97: $\phi$ ($\approx1.61803$): golden ratio 97: Josephus\sub numbers 97: Knuth\sub numbers 97: discrepancy 97: doubly exponential recurrences 97: phi ($\approx1.61803$)\sub in solutions to recurrences 97: recurrences\sub doubly exponential 97: spectra 98: doubly infinite sums 98: infinite sums\sub doubly 98: sums\sub doubly infinite 99: partitions 99: phi ($\approx1.61803$)\sub in solutions to recurrences 99: spectra 99: spiral function100: $\sqrt2$ ($\approx1.41421$)100: Josephus\sub numbers100: Josephus\sub problem100: Knuth\sub numbers100: doubly exponential recurrences100: fractional parts\sub in polynomials100: recurrences\sub doubly exponential100: recurrences\sub unfolding100: replicative function100: square root\sub of $2$100: unfolding a recurrence101: Fibonacci\sub algorithm101: algorithms\sub Fibonacci's101: algorithms\sub greedy101: doubly exponential recurrences101: greedy algorithm101: partitions101: recurrences\sub doubly exponential101: spectra101: unit fractions102--105: divisibility102--152: number theory102--152: theory of numbers102: $\divides$: divides102: Graham102: Knuth102: Patashnik102: multiple of a number103--104: Euclid\sub algorithm103--104: greatest common divisor103: algorithms\sub Euclid's103: gcd103: hcf103: lcm103: least common multiple104--105: summation\sub over divisors104: algorithms\sub self-certifying104: certificate of correctness104: self-certifying algorithms105--111: prime numbers105: Mathews105: Seaver105: composite numbers105: double sums\sub over divisors105: interchanging the order of summation105: nonprime numbers105: summation\sub interchanging the order of106--107: Fundamental Theorem of Arithmetic106--107: factorization into primes106--107: unique factorization106: $\prod$-notation106: Mathews106: Seaver106: algebraic integers106: empty product106: prime algebraic integers106: product notation107--108: Euclid (= xxx)107: duality\sub between gcd and lcm107: greatest common divisor107: least common multiple107: number system107: number system\sub prime-exponent107: prime-exponent representation108--109: Euclid\sub numbers108: $\ldots\,$108: closed form\sub not108: ellipsis ($\cdots@$)\sub elimination of108: relatively prime integers108: three-dots ($\cdots@$) notation\sub elimination of109--110: Mersenne, Marin109--110: Mersenne\sub numbers109--110: Mersenne\sub primes109--110: prime numbers\sub Mersenne109--110: prime numbers\sub largest known109: Cray X-MP109: Hanoi109: Slowinski, David Allen109: Tower of Hanoi109: doubly exponential recurrences109: personal computer109: radix notation109: recurrences\sub doubly exponential110--111: asymptotics\sub of $n$th prime110--111: pi function110--111: prime numbers\sub size of $n$th110: factorization into primes110: primality testing111--112: permutations111--115: $!$: factorial111--115: factorial function111: Eratosthenes, sieve of111: Hardy, Godfrey Harold111: Kramp, Christian111: Rosser, John Barkley111: Schoenfeld, Lowell111: Wright, Sir Edward Maitland111: counting\sub permutations111: distribution\sub of primes111: empty product111: sieve of Eratosthenes112--114: $\epsilon_p(n)$: largest power of $p$ dividing~$n$112--114: divides exactly\sub in factorials112--114: exactly divides\sub in factorials112: Gau{\ss} (= Gauss)\sub trick112: Stirling\sub approximation112: asymptotics\sub of factorials113--114: binary notation (radix~$2$)113--114: radix notation\sub related to prime factors113: ruler function114: geometric progression\sub floored114: nu function: sum of digits\sub binary (radix $2$)114: sideways addition115--123: relatively prime integers115: $\rp$: is relatively prime to115: notation\sub need for new115: prime to116--123: Stern--Brocot tree116--123: fractions116: Brocot, Achille116: Stern, Moriz Abraham116: mediant116: number system\sub prime-exponent116: prime-exponent representation117: ancestor117: binary trees117: invariant relation117: trees\sub binary118--119: Farey, John, series118--119: Farey\sub consecutive elements of119--123: Stern--Brocot number system119: number system121: binary search122--123: Stern--Brocot number system\sub simplest rational approximations from122--123: irrational numbers\sub Stern--Brocot representations122--123: irrational numbers\sub rational approximations to122: $e$ ($\approx2.71828$)\sub representations of122: Euler122: Stern--Brocot number system\sub representation of $e$123--126: $\equiv$: is congruent to123--126: congruences123--126: mod: congruence relation123--129: modular arithmetic123: Euclid\sub algorithm123: Gau{\ss} (= Gauss)123: algorithms\sub Euclid's124: Hacker's Dictionary124: equivalence relation124: transitive law125: inverse modulo $m$126--129: number system\sub residue126--129: residue number system126: Chinese Remainder Theorem126: Sun Ts\u u [= S\=unz\u{\i}, Master Sun]127: Mersenne\sub primes127: multiple-precision numbers127: prime numbers\sub Mersenne128--129: roots of unity\sub modulo $m$128--129: square root\sub of $1$ (mod $m$)129: trivial, clarified130--131: Fermat's Last Theorem130: Dirichlet\sub box principle130: Fermat, Pierre de130: box principle130: pigeonhole principle131--132: Fermat\sub numbers131--133: Fermat's theorem (= Fermat's Little Theorem)131: Connection Machine131: Elkies, Noam David131: Euler\sub disproved conjecture131: Fermat131: Frye, Roger Edward131: Mersenne131: Wiles, Andrew John132--133: Wilson, Sir John, theorem132--134: Euler132: Fermat's theorem (= Fermat's Little Theorem)\sub converse of132: inverse modulo $m$132: last but not least133--135: phi function133--135: totient function133: Euler\sub theorem133: Sylvester, James Joseph133: efficiency133: primality testing\sub impractical method134--135: fractions\sub unreduced134--136: multiplicative functions134: Farey\sub enumeration of134: basic fractions134: fractions\sub basic135--137: summation\sub over divisors136--137: Dedekind, Julius Wilhelm Richard136--137: Liouville, Joseph136--138: recurrences\sub implicit136--139: M\"obius\sub function136--139: implicit recurrences136--139: inversion formulas\sub for sums over divisors136: M\"obius, August Ferdinand136: interchanging the order of summation136: summation\sub interchanging the order of137--139: $\Phi$: sum of $\varphi$137--139: Farey\sub enumeration of137--139: Phi function: sum of $\phi$137--144: totient function\sub summation of138: M\"obius138: algorithms, analysis of138: analysis of algorithms138: basic fractions138: fractions\sub basic139--140: cycles\sub of beads139--141: counting\sub necklaces139--141: necklaces139: Mertens, Franz Carl Joseph139: name and conquer140: MacMahon, Maj.~Percy Alexander141--143: Fermat's theorem (= Fermat's Little Theorem)141: summation\sub over divisors142: Euler\sub theorem144: Josephus\sub problem144: multiplicative functions144: number system\sub residue144: residue number system145: Bertrand, Joseph Louis Fran\c{c}ois145: Bertrand\sub postulate145: Chebyshev145: Euclid\sub numbers145: Fermat\sub numbers145: M\"obius\sub function145: distributive law\sub for gcd and lcm145: greatest common divisor145: least common multiple145: squarefree146--148: radix notation\sub related to prime factors146: $\edivides$: exactly divides146: $\epsilon_p(n)$: largest power of $p$ dividing~$n$146: $\pi$ ($\approx3.14159$)146: Chinese Remainder Theorem146: Hanoi146: Stern--Brocot number system\sub representation of $\pi$146: Stern--Brocot number system\sub simplest rational approximations from146: Tower of Hanoi
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -