📄 c7.ans
字号:
\ansno7.35: (a) ${1\over n}\sum_{0<k<n}\bigl(1/k+1/(n-k)\bigr)={2\over n}H_{n-1}$.(b)~$[z^n]\,\bigl(\ln{1\over1-z}\bigr)^2={2!\over n!}{n\brack2}={2\over n}H_{n-1}$ by \equ(7.|log-power-gf|) and \equ(6.|stirl-harmonic|).Another way to do part~(b) is to use the rule $[z^n]\,F(z)={1\over n}[z^{n-1}]\,F'(z)$ with $F(z)=\bigl(\ln{1\over1-z}\bigr)^2$.\ansno7.36: ${1-z^m\over1-z}A(z^m)$.\source {1974 final exam.}\ansno7.37: (a) The amazing identity $a_{2n}=a_{2n+1}=b_n$ holds in the table\begindisplay \let\preamble=\tablepreamblen&&0&1&2&3&4&5&6&7&8&9&10\cr\noalign{\hrule}a_n&&1&1&2&2&4&4&6&6&10&10&14\cr\noalign{\hrule}b_n&&1&2&4&6&10&14&20&26&36&46&60\cr\enddisplay(b) $A(z)=1/\bigl((1-z)(1-z^2)(1-z^4)(1-z^8)\ldots\,\,\bigr)$.(c) $B(z)=A(z)/(1-z)$, and we want to show that $A(z)=(1+z)B(z^2)$.This follows from $A(z)=A(z^2)/(1-z)$.\source{"Euler" [|euler-partitions|, \S50]; 1971 final exam.}\ansno7.38: $(1-wz)M(w,z)=\sum_{m,n\ge1}\bigl(\min(m,n)-\min(m{-}1,n{-}1)\bigr)w^mz^n=\sum_{m,n\ge1}w^mz^n=wz/(1-w)(1-z)$.In general,\begindisplayM(z_1,\ldots,z_m)={z_1\ldots z_m\over(1-z_1)\ldots(1-z_m)(1-z_1\ldots z_m)}\,.\enddisplay\source{"Carlitz" [|carlitz-max|].}\ansno7.39: The answers to the hint are"!Stirling numbers as sums of products"\begindisplay\sum_{1\le k_1<k_2<\cdots<k_m\le n}\hskip-1.5em a_{k_1}a_{k_2}\ldots a_{k_m} \And\!\!\!\sum_{1\le k_1\le k_2\le\cdots\le k_m\le n}\hskip-1.5ema_{k_1}a_{k_2}\ldots a_{k_m}\,,\enddisplayrespectively. Therefore: (a) We want the coefficient of $z^m$ in the product$(1+z)(1+2z)\ldots(1+nz)$. This is the reflection of $(z+1)\_^n$, so it is${n+1\brack n+1}+{n+1\brack n}z+\cdots+{n+1\brack 1}z^n$ and the answer is$n+1\brack n+1-m$.(b)~The coefficient of $z^m$ in $1/\bigl((1-z)(1-2z)\ldots(1-nz)\bigr)$ is$m+n\brace n$ by \equ(7.|stirl2-gf|).\source{[|knuth1|, exercise 1.2.9--18].}\ansno7.40: The egf for $\<nF_{n-1}-F_n\>$ is $(z-1)\widehat F(z)$ where $\widehat F(z)=\sum_{n\ge0}F_nz^n\!/n!=(e^{\phi z}-e^{\phihat z})/\mkern-1mu\sqrt5$. Theegf for $\<n\?@\>$ is $e^{-z}\!/(1-z)$. The product is\begindisplay5^{-1/2}\bigl(e^{(\phihat-1)z}-e^{(\phi-1)z}\bigr)=5^{-1/2}(e^{-\phi z}-e^{-\phihat z})\,.\enddisplayWe have $\widehat F(z)e^{-z}=-\widehat F(-z)$. So the answer is $(-1)^nF_n$.\ansno7.41: The number of up-down permutations with the largestelement~$n$ in position~$2k$ is${n-1\choose2k-1}A_{2k-1}A_{n-2k}$. Similarly, the number of up-down permutationswith the smallest element~$1$ in position~$2k+1$ is $\smash{n-1\choose2k}A_{2k}A_{n-2k-1}$, because down-up permutations and up-down permutations are equallynumerous. Summing over all possibilities gives\begindisplay2A_n=\sum_k{n-1\choose k}\,A_k\,A_{n-1-k}+2\[n=0]+\[n=1]\,.\enddisplayThe egf $\widehat A$ therefore satisfies $2\widehat A'(z)=\widehat A(z)^2+1$ and $\widehat A(0)=1$;the given functionsolves this differential equation.(Consequently $A_n=\vert E_n\vert+T_n$ is a "secant number" when $n$ is even,"!Euler number" a "tangent number" when $n$ is odd.)\source{"Andr\'e" [|andre|]; [|knuth3|, exercise 5.1.4--22].}\ansno7.42: Let $a_n$ be the number of Martian DNA strings that don't endwith $c$ or~$e$; let $b_n$ be the number that do. Then\begindisplay \openup3pt&a_n=3a_{n-1}+2b_{n-1}+\[n=0]\,,\qquad&b_n=2a_{n-1}+b_{n-1}\,;\cr&A(z)=3zA(z)+2zB(z)+1\,,\qquad&B(z)=2zA(z)+zB(z)\,;\cr&A(z)={1-z\over1-4z-z^2}\,,\qquad&B(z)={2z\over1-4z-z^2}\,;\cr\enddisplayand the total number is $[z^n](1+z)/(1-4z-z^2)=F_{3n+2}$.\source{1974 final exam.}\ansno7.43: By \equ(5.|newton-series|), $g_n=\Delta^n \dot G(0)$.The $n$th difference of a product can be written\begindisplay\Delta^n A(z)B(z)=\sum_k{n\choose k}\bigl(\Delta^k E^{n-k}A(z)\bigr) \bigl(\Delta^{n-k}B(z)\bigr)\,,\enddisplayand $E^{n-k}=(1+\Delta)^{n-k}=\sum_j{n-k\choose j}\Delta^j$.Therefore we find\begindisplayh_n=\sum_{j,k}{n\choose k}{n-k\choose j}\,f_{j+k}\,g_{n-k}\,.\enddisplayThis is a sum over all trinomial coefficients; it can be put intothe more symmetric form "!trinomial"\begindisplayh_n=\sum_{j+k+l=n}{n\choose j,k,l}\,f_{j+k}\,g_{k+l}\,.\enddisplay\ansno7.44: Each partition into $k$ nonempty subsets can be ordered\g The empty set\par is pointless.\gin $k!$ ways, so $b_k=k!$. Thus $\widehat Q(z)=\sum_{n,k\ge0}{n\brace k}k!\,z^n\!/n!=\sum_{k\ge0}(e^z-1)^k=1/(2-e^z)$. And this is the geometricseries $\sum_{k\ge0}e^{kz}\!/2^{k+1}$,hence $a_k=1/2^{k+1}$. Finally, $c_k=2^k$; consider all permutationswhen the $x$'s are distinct, change each `$>$' between subscripts to `$<$'and allow each `$<$' between subscripts to become either `$<$' or `$=$'.(For example, the permutation $x_1x_3x_2$ produces $x_1<x_3<x_2$ and$x_1=x_3<x_2$, because $1<3>2$.)\source{"Gross" [|gross|]; [|knuth3|, exercise 5.3.1--3].}\ansno7.45: This sum is $\sum_{n\ge1}r(n)/n^2$, where $r(n)$ is the number ofways to write $n$ as a product of two relatively prime factors. If $n$~isdivisible by~$t$ distinct primes, $r(n)=2^t$. Hence $r(n)/n^2$ ismultiplicative and the sum is\begindisplay\prod_p\biggl(1+{2\over p^2}+{2\over p^4}\cdots\,\biggr)&=\prod_p\biggl(1+{2\over p^2-1}\biggr)\cr&=\prod_p\biggl({p^2+1\over p^2-1}\biggr)=\zeta(2)^2\!/\zeta(4)={5\over2}\,.\enddisplay\source{"de Bruijn" [|de-br-prob9|].}\ansno7.46: Let $S_n=\sum_{0\le k\le n/2}{n-2k\choose k}\alpha^k$. Then$S_n=S_{n-1}+\alpha S_{n-3}+\[n=0]$, and the generating function is$1/(1-z-\alpha z^3)$. When $\alpha=-{4\over27}$, the hint tells us thatthis has a nice factorization $1/(1+{1\over3}z)(1-{2\over3}z)^2$.The general expansion theorem now tells us that$S_n=({2\over3}n+c)({2\over3})^n+{1\over9}(-{1\over3})^n$, and the remaining constant~$c$turns out to be $8\over9$.\ansno7.47: The Stern--Brocot representation of $\sqrt3$ is $R(LR^2)^\infty$,because\begindisplay\sqrt3+1=2+{1\over\displaystyle1+{\strut1\over\sqrt3+1}}\,.\enddisplayThe fractions are $1\over1$, $2\over1$, $3\over2$, $5\over3$, $7\over4$,$12\over7$, $19\over11$, $26\over15$, \dots; they eventuallyhave the cyclic pattern\begindisplay{V_{2n-1}{+}V_{2n+1}\over U_{2n}},\,{U_{2n}{+}V_{2n+1}\over V_{2n+1}},\,{U_{2n+2}{+}V_{2n-1}\over U_{2n}{+}V_{2n+1}},\,{V_{2n+1}{+}V_{2n+3}\over U_{2n+2}},\\ldots\,.\enddisplay\source{"Waugh" and "Maxfield" [|rt-3|].}\ansno7.48: We have $g_0=0$, and if $g_1=m$ the generating function satisfies\begindisplayaG(z)+bz^{-1}G(z)+cz^{-2}\bigl(G(z)-mz\bigr)+{d\over1-z}=0\,.\enddisplayHence $G(z)=P(z)/(az^2+bz+c)(1-z)$ for some polynomial $P(z)$. Let$\rho_1$ and $\rho_2$ be the roots of $cz^2+bz+a$, with $\vert\rho_1\vert\ge\vert\rho_2\vert$. If $b^2-4ac\le0$ then $\vert\rho_1\vert^2=\rho_1\rho_2=a/c$ is rational, contradicting the fact that $\root n\of{g_n}$approaches $1+\sqrt2$. Hence $\rho_1=(-b+\sqrt{\,b^{\mathstrut2}-4ca})/2c=1+\sqrt2@$; and this implies that $a=-c$, $b=-2c$, $\rho_2=1-\sqrt2$. Thegenerating function now takes the form\begindisplay \openup3ptG(z)&={z\bigl(m-(r+m)z\bigr)\over(1-2z-z^2)(1-z)}\cr&={-r+(2m+r)z\over2(1-2z-z^2)}+{r\over2(1-z)}=mz+(2m-r)z^2+\cdots\,,\enddisplaywhere $r=d/c$. Since $g_2$ is an integer, $r$ is an integer. We also have\begindisplayg_n=\alpha(1+\sqrt2\,)^n+\hat\alpha(1-\sqrt2\,)^n+{\textstyle\half}r=\bigl\lfloor\alpha(1+\sqrt2\,)^n\bigr\rfloor\,,\enddisplayand this can hold only if $r=-1$, because $(1-\sqrt2\,)^n$ alternates insign as it approaches zero.Hence $(a,b,c,d)=\pm(1,2,-1,1)$.Now we find $\alpha={1\over4}(1+\sqrt2\,m)$,which is between $0$ and~$1$ only if $0\le m\le 2$. Each of thesevalues actually gives a solution; the sequences $\<g_n\>$ are$\<0,0,1,3,8,\ldots\,\>$,$\<0,1,3,8,20,\ldots\,\>$, and$\<0,2,5,13,32,\ldots\,\>$.\source{1984 final exam.}\ansno7.49: (a) The denominator of $\bigl(1/\bigl(1-(1+\sqrt2@)z\bigr)+1/\bigl(1-(1-\sqrt2@)z\bigr)\bigr)$ is $1-2z-z^2$; hence$a_n=2a_{n-1}+a_{n-2}$ for $n\ge2$. (b)~True because $a_n$ is evenand $-1<1-\sqrt2<0$. (c)~Let\begindisplayb_n=\biggl({p+\sqrt q\over2}\biggr)^n+ \biggl({p-\sqrt q\over2}\biggr)^n\,.\enddisplayWe would like $b_n$ to be odd for all $n>0$, and $-1<(p-\sqrt q@)/2<0$.Working as in part~(a), we find $b_0=2$, $b_1=p$, and$b_n=pb_{n-1}+{1\over4}(q-p^2)b_{n-2}$ for $n\ge2$.One satisfactory solution has $p=3$ and $q=17$.\source{"Waterhouse" [|waterhouse|].}\ansno7.50: Extending the multiplication idea of exercise |triangulations|, wehave\begindisplay \advance\abovedisplayskip10pt\unitlength=3.33333pt\def\\(#1,#2){\put(#1,#2){\makebox(0,0){$Q$}}}\def\sqr#1{\cpic(4,4)(0,0) \put(0,0){\line(0,1){4}} \put(0,0){\line(1,0){4}} \put(0,4){\line(1,0){4}}\put(4,0){\line(0,1){4}} #1\endcpic}%Q=\dgn +\quad\tri{\\(-1.1,3)\\(5,3)}\quad+\;\quad\sqr{\\(-2,2)\\(2,6)\\(6,2)}\;\quad+\,\quad\pnt{\\(-2.6,1)\\(-1.3,5.4)\\(4.9,5.2)\\(6.7,1)}\quad\,+\cdots\,.\enddisplayReplace each $n$-gon by $z^{n-2}$.This substitutionbehaves properly under multiplication,because the pasting operation takesan $m$-gon and an $n$-gon into an $(m+n-2)$-gon. Thus the generating function is\begindisplayQ=1+zQ^2+z^2Q^3+z^3Q^4+\cdots=1+{zQ^2\over1-zQ}\enddisplayand the quadratic formula gives $Q=\bigl(1+z-\sqrt{@1-6z+z^{\mathstrut2}}\,\bigr)/4z$.The coefficient of $z^{n-2}$ in this power series is the number ofways to put nonoverlapping diagonals into a convex $n$-gon. Thesecoefficients apparentlyhave no closed form in terms of other quantities that we have discussed in\g\vskip-22pt Give me "Legendre" polynomials and I'll~give you a "closed~form".\gthis book,but their asymptotic behavior is known [|knuth1|, exercise2.2.1--12].\parIncidentally, if each $n$-gon in $Q$ is replaced by $wz^{n-2}$ we get\begindisplayQ={1+z-\sqrt{\,1-\smash{(4w+2)}z+z^{2\mathstrut}}\over 2(1+w)z}\,,\enddisplaya formula in which the coefficient of $w^mz^{n-2}$ is the number ofways to divide an $n$-gon into $m$ polygons by nonintersecting diagonals.\source{"Schr\"oder" [|schroeder|]; [|knuth1|, exercise 2.3.4.4--31].}\ansno7.51: The key first step is to observe that the square of the numberof ways is the number of cycle patterns of a certain kind, generalizingexercise |fib-squared|. These can be enumerated by evaluating thedeterminant of a matrix whose eigenvalues are not difficult to determine.When $m=3$ and $n=4$, the fact that $\cos 36^\circ=\phi/2$ is helpful(exercise 6.|cos36|).\source{"Fisher" [|fisher|]; "Percus" [|percus|, pp.~89--123]; "Stanley"~[|stanley-dimers|].}\ansno7.52: The first few cases are $p_0(y)=1$, $p_1(y)=y$, $p_2(y)=y^2+y$,$p_3(y)=y^3+3y^2+3y$. Let $p_n(y)=q_{2n}(x)$ where $y=x(1-x)$; we seeka generating function that defines $q_{2n+1}(x)$ in a convenient way.One such function is $\sum_n q_n(x)z^n\!/n!=2e^{ixz}\!/(e^{iz}+1)$, from which it followsthat $q_n(x)=i^nE_n(x)$, where $E_n(x)$ is called an "Euler polynomial".We have $\sum(-1)^xx^n\,\delta x=\half(-1)^{x+1}E_n(x)$, so Euler polynomialsare analogous to Bernoulli polynomials, and they have factors analogous tothose in \equ(6.|bern-factors|). By exercise 6.|z/ez+1| we have $nE_{n-1}(x)=\sum_{k=0}^n{n\choose k}B_kx^{n-k}(2-2^{k+1})$; this polynomialhas integer coefficientsby exercise~6.|prove-staudt-clausen|. Hence $q_{2n}(x)$, whose coefficientshave denominators that are powers of~$2$, must have integer coefficients.Hence $p_n(y)$ has integer coefficients. Finally, the relation$(4y-1)p_n''(y)+2p_n'(y)=2n(2n-1)p_{n-1}(y)$ shows that\def\\{\atopwithdelims\vert\vert}\begindisplay2m(2m-1){n\\m}=m(m+1){n\\m+1}+2n(2n-1){n-1\\m-1}\,,\enddisplayand it follows that the $n\\m$'s are positive. (A similar proof shows thatthe related quantity $(-1)^n(2n+2)E_{2n+1}(x)/(2x-1)$ has positive integer coefficients, when expressed asan $n$th degree polynomial in~$y$.) It can be shown that $n\\1$ isthe "Genocchi number" $(-1)^{n-1}(2^{2n+1}-2)B_{2n}$(see exercise 6.|genocchi-answer|), and that${n\\n-1}={n\choose2}$, ${n\\n-2}=2{n+1\choose4}+3{n\choose4}$, etc.\source{"Hammersley" [|hammersley-undergrad|].}\ansno7.53: It is $P_{(1+V_{4n+1}+V_{4n+3})/6}$.Thus, for example, $T_{20}=P_{12}=210$; $T_{285}=P_{165}=40755$.\source{"Euler" [|euler-algebra|, part 2, section 2, chapter 6, \S91].}\ansno7.54: Let $E_k$ be the operation on power series that sets all coefficientsto zero except those of $z^n$where $n\bmod m=k$. The statedconstruction is equivalent to the operation\begindisplayE_0\,S\,E_0\,S\,(E_0+E_1)\,S\,\ldots\,S\,(E_0+E_1+\cdots+E_{m-1})\enddisplayapplied to $1/(1-z)$, where $S$ means ``multiply by $1/(1-z)$.''There are $m!$ terms\begindisplayE_0\,S\,E_{k_1}\,S\,E_{k_2}\,S\,\ldots\,S\,E_{k_m}\enddisplaywhere $0\le k_j<j$, and every such term evaluates to $z^{rm}\!/(1-z^m)^{m+1}$ if$r$ is the number of places where $k_j<k_{j+1}$. Exactly $m\euler r$ termshave a given value of~$r$, so the coefficient of $z^{mn}$ is$\sum_{r=0}^{m-1}{m\euler r}{n+m-r\choose m}=(n+1)^m$ "!Eulerian numbers"by \equ(6.|expand-ord-to-consec|).(The fact that operation $E_k$ can be expressed with complex rootsof unity seems to be of no help in this problem.)\source{"Moessner" [|moessner|].}\ansno7.55: Suppose that $P_0(z)@F(z)+\cdots+P_m(z)@F^{(m)}(z)=Q_0(z)@G(z)+\cdots+Q_n(z)@G^{(n)}(z)=0$, where $P_m(z)$ and $Q_n(z)$ are nonzero. (a)~Let$H(z)=F(z)+G(z)$. Then there are rational functions $R_{k,l}(z)$ for $0\le l<m+n$such that $H^{(k)}(z)=R_{k,0}(z)@F^{(0)}(z)+\cdots+R_{k,m-1}(z)@F^{(m-1)}(z)+R_{k,m}(z)@G^{(0)}(z)+\cdots+R_{k,m+n-1}(z)@G^{(n-1)}(z)$. The $m+n+1$ vectors$\bigl(R_{k,0}(z),\ldots,R_{k,m+n-1}(z)\bigr)$ are linearly dependent in the$(m+n)$-dimensional vector space whose components are rational functions;hence there are rational functions $S_l(z)$, not all zero, such that$S_0(z)@H^{(0)}(z)+\cdots+S_{m+n}(z)@H^{(m+n)}(z)=0$. (b)~Similarly, let$H(z)=F(z)@G(z)$. There are rational $R_{k,l}(z)$ for $0\le l<mn$ with$H^{(k)}(z)=\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}R_{k,ni+j}(z)@F^{(i)}(z)@G^{(j)}(z)$,hence $S_0(z)@H^{(0)}(z)+\cdots+S_{mn}(z)@H^{(mn)}(z)=0$ for some rational$S_l(z)$, not all zero. (A similar proof shows that if $\<f_n\>$ and $\<g_n\>$are polynomially recursive, so are $\<f_n+g_n\>$ and $\<f_ng_n\>$.Incidentally, there is no similar result for quotients; for example,$\cos z$ is differentiably finite, but $1/\!\cos z$ is not.)\source{"Stanley" [|stanley-d-finite|].}\ansno7.56: "Euler" [|euler-middle|] showed that this number is also$[z^n]\,1\mskip-1mu/\mskip-2mu\sqrt{1{-}2z{-}3z^{2\mathstrut}}$, andhe gave the formula $t_n=\sum_{k\ge0}n\_{2k}/k!^2=\sum_k{n\choose k}{n-k\choose k}$. He alsodiscovered a ``memorable failure of induction'' "!induction, failure"while examining these numbers: Although $3t_n-t_{n+1}$ is equal to$F_{n-1}(F_{n-1}+1)$ for $0\le n\le8$, this empirical law mysteriouslybreaks down when $n$ is $9$ or more! George "Andrews"~[|andrews-euler|]has explained the mystery by showing that the sum $\sum_k[z^{n+10k}]\,(1+z+z^2)^n$ can be expressed as a closed form in terms of "Fibonaccinumbers".\parH.\thinspace S. "Wilf" observes that $[z^n]\,(a+bz+cz^2)^n$=$[z^n]\,1/f(z)$, where $f(z)=\sqrt{1-2bz+(b^{2\mathstrut}-4ac)z^2}$ (see[|wilfology|, page~159]), and it follows that the coefficients satisfy\begindisplay(n+1)A_{n+1}-(2n+1)b@A_n+n(b^2-4ac)A_{n-1}=0\,.\enddisplayThe algorithm of "Petkov\v{s}ek" [|petk|] can be used to prove that thisrecurrence has a closed form solution as a finite sum of "hypergeometricterms" if and only if $abc(b^2-4ac)=0$. Therefore in particular, the middletrinomial coefficients have no such closed form.\g\vskip-22pt Give me "Legendre polynomials" and I'll~give you a closed~form.\gThe next step is presumably to extend this result to a larger class ofclosed forms (including harmonic numbers and/or Stirling numbers, for example).\source{"Euler" [|euler-middle|].}\ansno7.57: (Paul "Erd\H os" "!reward"currently offers \$500 for a solution.)\source{[|erdos-graham|, p.~48] credits P. "Erd\H os" and P.~"Tur\'an".}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -