⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 index.tex

📁 Concrete_Mathematics_2nd_Ed_TeX_Source_Code
💻 TEX
📖 第 1 页 / 共 4 页
字号:
% Index for Concrete Mathematics% (c) Addison-Wesley, all rights reserved.\input gkpmac\pageno=637\beginchapter {} IndexWHEN AN INDEX ENTRY refers to a page containing a relevant exercise,the answer to that exercise (in Appendix~A) might divulge further\g (Graffiti have been indexed too.)\ginformation; an answer page is not indexed here unless it refers to a topicthat isn't included in the statement of the relevant exercise.Some notations not indexed here (like $x\_n$, $\lfloor x\rfloor$,and $n\euler m$) are listed on pages x and~xi, just beforethe table of contents.\looseness=-1\newbox\partialpage\output={\global\setbox\partialpage=\vbox{\unvbox255\bigskip}}\eject\advance\vsize-\ht\partialpage \textfont0=\gmathtext  \scriptfont0=\gmathsubtext  \scriptscriptfont0=\gmathsubsubtext \textfont1=\gmathlet \let\tfont=\gtfont  \scriptfont1=\gmathsublet  \scriptscriptfont1=\gmathsubsublet \textfont2=\gmathsym  \scriptfont2=\gmathsubsym  \scriptscriptfont2=\gmathsubsubsym \textfont3=\gmathext  \scriptfont3=\gmathsubext  \scriptscriptfont3=\gmathsubsubext\textfont\scrfam=\gmathscr \scriptfont\scrfam=\gmathsubscr \scriptscriptfont\scrfam=\gmathsubsubscr\textfont\frfam=\gmathfr \scriptfont\frfam=\gmathsubfr \scriptscriptfont\frfam=\gmathsubsubfr\textfont\euexfam=\gmatheuex\scriptfont\euexfam=\gmathsubsym % OK since I don't use all chars in this size\textfont\eqfam=\nineeq \def\rm{\fam0 \gmathtext}% \let\oldsty=\goldstyle \let\big=\ninebig \setbox\strutbox=\hbox{\vrule height7.25pt depth2.75pt width0pt}% \gmathtext % that's 9pt roman\rightskip0pt plus4em \spaceskip.3333em \xspaceskip.5em\baselineskip 12pt plus.2pt minus.2pt\parindent=0pt\everypar{\hangindent=20pt}\def\sub{{\penalty50\parskip=0pt\leavevmode}\kern10pt\hangindent=30pt}\hsize=2.75in\newif\ifright \newbox\leftcol\output{\ifright\twocolumnout\global\rightfalse  \else\leftcolumnsave\global\righttrue\fi}\def\leftcolumnsave{\global\setbox\leftcol=\box255}\def\twocolumnout{\shipout\vbox to\totheight{ % here we define 1 page of output    \offinterlineskip % butt the boxes together    \vbox to 2pc{ % this part goes on top of the regular pages      \ifodd\pageno \rightheadline\else\leftheadline\fi      \vfill} % this completes the \vbox to 2pc    \ifvoid\partialpage\else\global\advance\vsize\ht\partialpage      \ifodd\pageno\moveright7pc\fi \box\partialpage\fi    \hbox to35pc{\box\leftcol\hss\box255}    \vfill    \iftitle \global\titlefalse % reset the titlepage switch	\ifodd\pageno \hbox to35pc{\hfil\foliofont\folio}	\else\hbox{\foliofont\folio}\fi\fi    \ifpreprint\ifinxmode\makeinxfooter\fi\fi    }  \advancepageno}\exhyphenpenalty=10000\def\=#1{{\accent22 #1}}\def\see{{\ninesl\kern1pt see\/} }\def\also{{\ninesl\kern1pt see also\/} }\def\cpage{657} % colophon page\obeylines$0^0$, 162$\sqrt2$ ($\approx1.41421$), 100$\sqrt3$ ($\approx1.73205$), 378$\Im$: imaginary part, 64$\frak L$: logarithmico-exponential functions, 442--443$\Re$: real part, 64, 212, 451$\gamma$ ($\approx0.57722$), \see Euler's constant$\Gamma$, \see Gamma function$\delta$, 47--56$\Delta$: difference operator, 47--55, 241, 470--471$\epsilon_p(n)$: largest power of $p$ dividing~$n$, 112--114, 146$\zeta$, \see zeta function$\vartheta$, 219--221, 310, 347$\Theta$: Big Theta notation, 448$\kappa_m$, \see cumulants$\mu$, \see M\"obius function$\nu$, \see nu function$\pi$ ($\approx3.14159$), 26, 70, 146, 244, 485, 564, 596$\pi(x)$, \see pi function$\sigma$: standard deviation, 388; \also Stirling's constant$\sigma_n(x)$, \see Stirling polynomials$\phi$ ($\approx1.61803$): golden ratio, 70, 97, 299--301, 310, 553$\varphi$, \see phi function$\Phi$: sum of $\varphi$, 137--139, 462--463$\Omega$: Big Omega notation, 448$\sum$-notation, 22--25, 245$\prod$-notation, 64, 106$\bigwedge$-notation, 65$\Longleftrightarrow$: if and only if, 68$\Longrightarrow$: implies, 71$\divides$: divides, 102$\edivides$: exactly divides, 146$\rp$: is relatively prime to, 115$\prec$: grows slower than, 440--443$\succ$: grows faster than, 440--443$\asymp$: grows as fast as, 442--443$\sim$: is asymptotic to, 8, 428--429$\approx$: approximates, 23$\equiv$: is congruent to, 123--126$\#$: cardinality, 39$!$: factorial, 111--115$\?$: subfactorial, 194--200$\dts\,$: interval notation, 73--74$\ldots\,$: ellipsis, 21, 50, 108, \dots\medskip \advance\baselineskip-1ptAaronson, Bette Jane, ixAbel, Niels Henrik, 604, 634Abramowitz, Milton, 42, 604absolute convergence, 60--62, 64absolute error, 452, 455absolute value of complex number, 64absorption identities, 157--158, 261Acton, John Emerich Edward Dalberg, Baron, 66Adams, William Wells, 604, 635Addison-Wesley, ixaddition formula for ${n\choose k}_{\mathstrut}$, 158--159\sub analog for ${n\euler k}_{\mathstrut}$, 268\sub analogs for $n\brace k$ and $\,n\,\brack k$, 259, 261\sub dual, 530Aho, Alfred Vaino, 604, 633Ahrens, Wilhelm Ernst Martin Georg, 8, 604Akhiezer, Naum Il'ich, 604Alfred [Brousseau], Brother Ulbertus, 607, 633algebraic integers, 106, 147algorithms, analysis of, 138, 413--426\sub divide and conquer, 79\sub Euclid's, 103, 123, 303--304\sub Fibonacci's, 95, 101\sub Gosper's, 224--227\sub Gosper-Zeilberger, 229--241, 254--255\sub greedy, 101, 295\sub self-certifying, 104Alice, 31, 408--410, 430Allardice, Robert Edgar, 2, 604ambiguous notation, 245American Mathematical Society, viiiAMS Euler, ix, \cpageanalysis of algorithms, 138, 413--426analytic functions, 196ancestor, 117, 291Andr\'e, Antoine D\'esir\'e, 604, 635Andrews, George W. Eyre, 215, 330, 530, 575, 605, 634, 635answers, notes on, 497, 637, viiianti-derivative operator, 48, 470--471anti-difference operator, 48, 54, 470--471Ap\'ery, Roger, 238, 605, 629, 634\sub numbers, 238--239, 255approximation, \see asymptotics\sub of sums by integrals, 45, 276--277, 469--475Archibald, Raymond Clare, 608argument of hypergeometric, 205arithmetic progression, 30, 376\sub floored, 89--94\sub sum of, 6, 26, 30--31Armageddon, 85Armstrong, Daniel Louis (= Satchmo), 80Arnol'd, Vladimir Igorevich, 605, 635art and science, 234ascents, 267--268, 270Askey, Richard Allen, 634associative law, 30, 61, 64asymptotics, 439--496\sub from convergent series, 451\sub of Bernoulli numbers, 286, 452\sub of binomial coefficients, 248, 251, 495, 598\sub of discrepancies, 492, 495\sub of factorials, 112, 452, 481--482, 491\sub of harmonic numbers, 276--278, 452, 480--481, 491\sub of hashing, 426\sub of $n$th prime, 110--111, 456--457, 490\sub of Stirling numbers, 495, 602\sub of sums, using Euler's summation formula, 469--489\sub of sums, using tail-exchange, 466--469, 486--489\sub of sums of powers, 491\sub of wheel winners, 76, 453--454\sub table of expansions, 452\sub usefulness of, 76, 439Atkinson, Michael David, 605, 633Austin, Alan Keith, 607automaton, 405automorphic numbers, 520average, 384\sub of a reciprocal, 432\sub variance, 423--425\medskip$B_n$, \see Bernoulli numbersBachmann, Paul Gustav Heinrich, 443, 462, 605Bailey, Wilfrid Norman, 223, 548, 605, 634Ball, Walter William Rouse, 605, 633Banach, Stefan, 433Barlow, Peter, 605, 634Barton, David Elliott, 602, 609base term, 240baseball, 73, 148, 195, 519, 648, 653BASIC, 173, 446basic fractions, 134, 138basis of induction, 3, 10--11, 320--321Bateman, Harry, 626Baum, Lyman Frank, 581Beatty, Samuel, 605, 633bee trees, 291Beeton, Barbara Ann Neuhaus Friend Smith, viiiBell, Eric Temple, 332, 605, 635\sub numbers, 373, 493, 603Bender, Edward Anton, 606, 636Bernoulli, Jakob (= Jacobi = Jacques = James), 283, 470, 606\sub numbers, \see Bernoulli numbers\sub polynomials, 367--368, 470--475\sub polynomials, graphs of, 473\sub trials, 402; \also coins, flippingBernoulli, Johann (= Jean), 622Bernoulli numbers, 283--290\sub asymptotics of, 286, 452\sub calculation of, 288, 620\sub denominators of, 315\sub generalized, \see Stirling polynomials\sub generating function for, 285, 351, 365\sub relation to tangent numbers, 287\sub table of, 284, 620Bernshte{\u\i}n (= Bernstein), Serge{\u\i} Natanovich, 636Bertrand, Joseph Louis Fran\c{c}ois, 145, 606, 633\sub postulate, 145, 500, 550Bessel, Friedrich Wilhelm, functions, 206, 527Beyer, William Hyman, 606biased coin, 401bicycles, 260, 500Bieberbach, Ludwig, 617Bienaym\'e, Ir\'en\'ee Jules, 606Big Ell notation, 444Big Oh notation, 76, 443--449Big Omega notation, 448Big Theta notation, 448bijection, 39Bill, 408--410, 430binary logarithm, 70binary notation (radix~$2$), 11--13, 15--16, 70, 113--114binary partitions, 377binary search, 121, 183binary trees, 117Binet, Jacques Philippe Marie, 299, 303, 606,~633binomial coefficients, 153--242\sub addition formula, 158--159\sub asymptotics of, 248, 251, 495, 598\sub combinatorial interpretation, 153, 158, 160, 169--170\sub definition, 154, 211\sub dual, 530\sub generalized, 211, 318, 530\sub indices of, 154\sub middle, 187, 255--256, 495\sub reciprocal of, 188--189, 246, 254\sub top ten identities of, 174\sub wraparound, 250~(exercise~75), 315binomial convolution, 365, 367binomial distribution, 401--402, 415, 428, 432\sub negative, 402--403, 428binomial number system, 245binomial series, generalized, 200--204, 243, 252,~363binomial theorem, 162--163\sub as hypergeometric series, 206, 221\sub discovered mechanically, 230--233\sub for factorial powers, 245\sub special cases, 163, 199Blom, Gunnar, 606, 636bloopergeometric series, 243Boas, Ralph Philip, Jr., 600, 606, 636, viiiBoggs, Wade Anthony, 195Bohl, Piers Paul Felix [= Bol', Pirs Georgievich], 87, 606Bois-Reymond, Paul David Gustav du, 440, 610, 617Boncompagni, Prince Baldassarre, 613bootstrapping, 463--466\sub to estimate $n$th prime, 456--457Borchardt, Carl Wilhelm, 617Borel, \'Emile F\'elix \'Edouard Justin, 606, 636Borwein, Jonathan Michael, 606, 635Borwein, Peter Benjamin, 606, 635bound variables, 22boundary conditions on sums,\sub can be difficult, 75, 86\sub made easier, 24--25, 159bowling, 6box principle, 95, 130, 512bracket notation,\sub for coefficients, 197, 331\sub for true/false values, 24--25Brahma, Tower of, 1, 4, 278Branges, Louis de, 617Brent, Richard Peirce, 306, 525, 564, 606bricks, 313, 374Brillhart, John David, 606, 633Brocot, Achille, 116, 607Broder, Andrei Zary, 632, ixBrooke, Maxey, 607, 635Brousseau, Brother Alfred, 607, 633Brown, Mark Robbin, 632Brown, Morton, 501, 607Brown, Roy Howard, ixBrown, Thomas Craig, 607, 633Brown, Trivial, 607Brown, William Gordon, 607Brown University, ixBrowning, Elizabeth Barrett, 320Bruijn, Nicolaas Govert de, 444, 447, 500, 609, 635, 636\sub cycle, 500bubblesort, 448Buckholtz, Thomas Joel, 620Bulwer-Lytton, Edward George Earle Lytton, Baron, vBurma-Shave, 541Burr, Stefan Andrus, 607, 635\medskipcalculators, 67, 77, 459\sub failure of, 344calculus, vi, 33\sub finite and infinite, 47--56candy, 36Canfield, Earl Rodney, 602, 607, 636cards,\sub shuffling, 437\sub stacking, 273--274, 280, 309Carlitz, Leonard, 607, 635Carroll, Lewis (= Dodgson, Rev.~Charles Lutwidge), 31, 293, 607, 608, 630carries,\sub across the decimal point, 70\sub in divisibility of $m+n\choose m$, 245, 536\sub in Fibonacci number system, 297, 561Cassini, Jean Dominique, 292, 607\sub identity, 292--293, 300\sub identity, converse, 314\sub identity, generalized, 303, 310Catalan, Eug\`ene Charles, 203, 361, 607Catalan numbers, 203\sub combinatorial interpretations, 358--360, 565,~568\sub generalized, 361\sub in sums, 181, 203, 317\sub table of, 203Cauchy, Augustin Louis, 607, 633\v{C}ech, Eduard, viceiling function, 67--69\sub converted to floor, 68, 96\sub graph of, 68center of gravity, 273--274, 309certificate of correctness, 104Chace, Arnold Buffum, 608, 633Chaimovich, Mark, 608chain rule, 54, 483change, 327--330, 374\sub large amounts of, 344--346, 492changing the index of summation, 30--31, 39changing the tails of a sum, 466--469cheating, viii, 195, 388, 401\sub not, 158, 323Chebyshev, Pafnuti{\u\i} L'vovich, 38, 145, 608, 633\sub inequality, 390--391, 428, 430\sub monotonic inequalities, 38, 576cheese slicing, 19Chen, Pang-Chieh, 632Chinese Remainder Theorem, 126, 146Chu Shih-Chieh [= Zh\=u Sh\`{\i}ji\'e], 169Chung, Fan-Rong King, ix, 608, 635Clausen, Thomas, 608, 634, 635\sub product identities, 253clearly, clarified, 417--418, 581clich\'es, 166, 324, 357closed form, 3, 7, 321\sub for generating functions, 317\sub not, 108, 573\sub pretty good, 346closed interval, 73--74Cobb, Tyrus Raymond, 195coefficient extraction, 197, 331Cohen, Henri Jos\'e, 238coins, 327--330\sub biased, 401\sub fair, 401, 430\sub flipping, 401--410, 430--432, 437--438\sub spinning, 401Collingwood, Stuart Dodgson, 608Collins, John, 624Colombo, Cristoforo (= Columbus, Christopher), 74coloring, 496Columbia University, ixcombinations, 153common logarithm, 449commutative law, 30, 61, 64\sub failure of, 322, 502, 551\sub relaxed, 31complete graph, 368complex factorial powers, 211complex numbers, 64\sub roots of unity, 149, 204, 375, 553, 574, 598composite numbers, 105, 518composition of generating functions, 428computer algebra, 42, 268, 501, 539Comtet, Louis, 609, 636Concrete Math Club, 74concrete mathematics, defined, viconditional convergence, 59conditional probability, 416--419, 424--425confluent hypergeometric series, 206, 245congruences, 123--126Connection Machine, 131contiguous hypergeometrics, 529continuants, 301--309, 501\sub and matrices, 318--319\sub Euler's identity for, 303, 312\sub zero parameters in, 314continued fractions, 301, 304--309, 319\sub large partial quotients of, 553, 563, 564, 602convergence,\sub absolute, 60--62, 64\sub conditional, 59\sub of power series, 206, 331, 451, 532convex regions, 5, 20, 497convolution, 197, 246, 333, 353--364\sub binomial, 365, 367\sub identities for, 202, 272, 373\sub polynomials, 373\sub Stirling, 272, 290\sub Vandermonde, \see Vandermonde convolutionConway, John Horton, 410, 609cotangent function, 286, 317counting,\sub combinations, 153\sub cycle arrangements, 259--262\sub derangements, 193--196, 199--200\sub integers in intervals, 73--74\sub necklaces, 139--141\sub parenthesized formulas, 357--359\sub permutations, 111\sub permutations by ascents, 267--268\sub permutations by cycles, 262\sub set partitions, 258--259\sub spanning trees, 348--350, 356, 368--369, 374\sub with generating functions, 320--330coupon collecting, 583Cover, Thomas Merrill, 636Coxeter, Harold Scott Macdonald, 605Cram\'er, Carl Harald, 525, 609, 634Cray X-MP, 109Crelle, August Leopold, 609, 633cribbage, 65Crispin, Mark Reed, 628Crowe, Donald Warren, 609, 633crudification, 447Csirik, J\'anos Andr\'as, 590, 609cubes, sum of consecutive, 51, 63, 283, 289, 367cumulants, 397--401\sub infinite, 576\sub of binomial distribution, 432\sub of discrete distribution, 438\sub of Poisson distribution, 428--429\sub third and fourth, 429, 579, 589CUNY (= City University of New York), ixCurtiss, David Raymond, 609, 634cycles,\sub de Bruijn, 500\sub of beads, 139--140\sub of permutations, 259--262cyclic shift, 12

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -