⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chap6.tex

📁 Concrete_Mathematics_2nd_Ed_TeX_Source_Code
💻 TEX
📖 第 1 页 / 共 5 页
字号:
\put(0,0){\squine(30.0,33.3333335,37.5,30.0,26.6666665,24.0)}\put(0,0){\squine(37.5,40.9090905,45.0,24.0,21.818183,20.0)}\put(0,0){\squine(45.0,48.46154,52.5,20.0,18.4615374,17.142857)}\put(0,0){\squine(52.5,55.9999976,60.0,17.142857,16.0,15.0)}\put(0,0){\squine(60.0,63.5294123,67.5,15.0,14.1176476,13.3333334)}\put(0,0){\squine(67.5,71.052631,75.0,13.3333334,12.6315774,12.0)}\put(0,0){\squine(75.0,78.57143,82.5,12.0,11.42857,10.9090909)}\put(0,0){\squine(82.5,86.086953,90.0,10.9090909,10.4347837,10.0)}\put(0,0){\squine(90.0,93.599997,97.5,10.0,9.5999994,9.2307693)}\put(0,0){\squine(97.5,101.111122,105.0,9.2307693,8.8888885,8.5714285)}\put(0,0){\squine(105.0,108.62068,112.5,8.5714285,8.2758633,8.0)}\put(0,0){\squine(112.5,116.129034,120.0,8.0,7.74193513,7.5)}\put(0,0){\squine(120.0,123.636362,127.5,7.5,7.2727271,7.0588235)}\put(0,0){\squine(127.5,131.14286,135.0,7.0588235,6.85714376,6.6666667)}\put(0,0){\squine(135.0,138.648645,142.5,6.6666667,6.48648757,6.31578946)}\put(0,0){\squine(142.5,146.15385,150.0,6.31578946,6.1538444,6.0)}\put(0,0){\squine(150.0,153.658527,157.5,6.0,5.8536586,5.71428573)}\endpicture\enddisplayThe area under the curve between $1$ and $n$, which is $\int_1^n\,dx/x=\ln n$,is less than the area of the $n$~rectangles, which is $\sum_{k=1}^n1/k=H_n$.Thus $\ln n<H_n$; this is a sharper result than we had in \thiseq.And by placing the rectangles a little differently, we get a similar upper bound:\g\noindent\llap{``}I now see a way too how y$\rm^e\!$ aggregate of y$\rm^e\!$ termes ofMusicall progressions may bee found (much after y$\rm^e\!$ same manner)by Logarithms, but y$\rm^e\!$ calculations for finding out those ruleswould bee still more troublesom.''\par\hfill\dash---I. "Newton" [|newton-harm|]\g\begindisplay\unitlength=1pt\beginpicture(210,75)(-20,-10)\put(0,0){\vector(0,1){60}}\put(0,0){\vector(1,0){210}}\put(-10,60){\makebox(0,0){$f(x)$}}\put(210,-10){\makebox(0,0){$x$}}\put(30,0){\line(0,1){30}}\put(60,0){\line(0,1){15}}\put(90,0){\line(0,1){10}}\put(120,0){\line(0,1){7.5}}\put(150,0){\line(0,1){6}}\put(30,30){\line(-1,0){30}}\put(60,15){\line(-1,0){30}}\put(90,10){\line(-1,0){30}}\put(120,7.5){\line(-1,0){30}}\put(150,6){\line(-1,0){30}}\put(0,-10){\makebox(0,0){$\mathstrut 0$}}\put(30,-10){\makebox(0,0){$\mathstrut 1$}}\put(60,-10){\makebox(0,0){$\mathstrut 2$}}\put(90,-10){\makebox(0,0){$\mathstrut 3$}}\put(120,-10){\makebox(0,0){$\mathstrut \ldots$}}\put(150,-10){\makebox(0,0){$\mathstrut n$}}\put(35,50){\makebox(0,0){$f(x)=1/x$}}\put(0,0){\squine(22.5,25.7142859,30.0,40.0,34.2857146,30.0)}\put(0,0){\squine(30.0,33.3333335,37.5,30.0,26.6666665,24.0)}\put(0,0){\squine(37.5,40.9090905,45.0,24.0,21.818183,20.0)}\put(0,0){\squine(45.0,48.46154,52.5,20.0,18.4615374,17.142857)}\put(0,0){\squine(52.5,55.9999976,60.0,17.142857,16.0,15.0)}\put(0,0){\squine(60.0,63.5294123,67.5,15.0,14.1176476,13.3333334)}\put(0,0){\squine(67.5,71.052631,75.0,13.3333334,12.6315774,12.0)}\put(0,0){\squine(75.0,78.57143,82.5,12.0,11.42857,10.9090909)}\put(0,0){\squine(82.5,86.086953,90.0,10.9090909,10.4347837,10.0)}\put(0,0){\squine(90.0,93.599997,97.5,10.0,9.5999994,9.2307693)}\put(0,0){\squine(97.5,101.111122,105.0,9.2307693,8.8888885,8.5714285)}\put(0,0){\squine(105.0,108.62068,112.5,8.5714285,8.2758633,8.0)}\put(0,0){\squine(112.5,116.129034,120.0,8.0,7.74193513,7.5)}\put(0,0){\squine(120.0,123.636362,127.5,7.5,7.2727271,7.0588235)}\put(0,0){\squine(127.5,131.14286,135.0,7.0588235,6.85714376,6.6666667)}\put(0,0){\squine(135.0,138.648645,142.5,6.6666667,6.48648757,6.31578946)}\put(0,0){\squine(142.5,146.15385,150.0,6.31578946,6.1538444,6.0)}\put(0,0){\squine(150.0,153.658527,157.5,6.0,5.8536586,5.71428573)}\endpicture\enddisplayThis time the area of the $n$ rectangles, $H_n$, is less than the area ofthe first rectangle plus the area under the curve. We have proved that\begindisplay \postdisplaypenalty=10000\ln n<H_n<\ln n+1\,,\qquad\hbox{for $n>1$}.\eqno\eqref|harm-betw-logs|\enddisplayWe now know the value of $H_n$ with an error of at most~$1$.``Second order'' harmonic numbers $H_n^{(2)}$ arise when we sum the"!harmonic numbers, second order"squares of the reciprocals, instead of summing simply the reciprocals:\begindisplayH_n^{(2)}=1+{1\over4}+{1\over9}+\cdots+{1\over n^2}=\sum_{k=1}^n{1\over k^2}\,.\enddisplaySimilarly, we define harmonic numbers of order $r$ by summing $(-r)$th powers:\begindisplayH_n^{(r)}=\sum_{k=1}^n{1\over k^r}\,.\eqno\enddisplay\tabref|nn:hn-gen|%If $r>1$, these numbers approach a limit as $n\to\infty$; we noted inexercise 2.|zetaf|that this limit is conventionally called "Riemann"'s "zeta function":\begindisplay\zeta(r)=H_\infty^{(r)}=\sum_{k\ge1}{1\over k^r}\,.\eqno\enddisplay"Euler" [|euler-harmonics|]discovered a neat way to use generalized harmonic numbers to approximate"!harmonic numbers, approximate values"the ordinary ones, $H_n^{(1)}$. Let's consider the infinite series\begindisplay\ln\biggl({k\over k-1}\biggr)={1\over k}+{1\over2k^2}+{1\over3k^3} +{1\over4k^4}+\cdots\,,\eqno\enddisplaywhich converges when $k>1$. The left-hand side is$\ln k-\ln(k-1)$; therefore if we sum both sidesfor $2\le k\le n$ the left-hand sum telescopes and we get\begindisplay  \openup3pt\ln n-\ln1&=\sum_{k=2}^n\biggl({1\over k}+{1\over2k^2}+{1\over3k^3} +{1\over4k^4}+\cdots\,\biggr)\cr&\tightplus=\textstyle\bigl(H_n{-}1\bigr)+\half\bigl(H_n^{(2)}{-}1\bigr) +{1\over3}\bigl(H_n^{(3)}{-}1\bigr)+{1\over4}\bigl(H_n^{(4)}{-}1\bigr)+\cdots\,.\enddisplayRearranging, we have an expression for the difference between $H_n$ and$\ln n$:\begindisplay\textstyle H_n-\ln n=1-\half\bigl(H_n^{(2)}{-}1\bigr) -{1\over3}\bigl(H_n^{(3)}{-}1\bigr)-{1\over4}\bigl(H_n^{(4)}{-}1\bigr)-\cdots\,.\enddisplayWhen $n\to\infty$, the right-hand side approaches the limiting value\begindisplay\textstyle1-\half\bigl(\zeta(2){-}1\bigr) -{1\over3}\bigl(\zeta(3){-}1\bigr)-{1\over4}\bigl(\zeta(4){-}1\bigr)-\cdots\,,\enddisplaywhich is now known as {\it "Euler's constant"\/} and conventionally denotedby the Greek letter~"$\gamma$". In fact, $\zeta(r)-1$ is approximately\g\noindent\llap{``}Huius igitur quantitatis constantis\/ $C$ valorem deteximus,quippe est\/ ${C=0,577218}$.''\par\hfill\dash---L. "Euler" [|euler-harmonics|]\g$1/2^r$, so this infinite series converges rather rapidly and we cancompute the decimal value\begindisplay\gamma=0.5772156649\ldots\,.\eqno\enddisplayEuler's argument establishes the limiting relation\begindisplay\lim_{n\to\infty}(H_n-\ln n)=\gamma\,;\eqno\enddisplaythus $H_n$ liesabout 58\% of the way between the two extremes in \eq(|harm-betw-logs|).We are gradually homing in on its value.Further refinements are possible, as we will see in Chapter~9. We willprove, for example, that\begindisplayH_n=\ln n+\gamma+{1\over2n}-{1\over12n^2}+{\epsilon_n\over120n^4}\,,\qquad\hbox{$0<\epsilon_n<1$}.\eqno\enddisplayThis formula allows us to conclude that the millionth harmonic number is\begindisplayH_{1000000}\approx14.3927267228657236313811275\,,\enddisplaywithout adding up a million fractions. Among other things, this impliesthat a stack of a million cards can overhang the edge of a table by more thanseven cardlengths.What does \thiseq\tell us about the "worm" on the "rubber band"? Since $H_n$ isunbounded, the worm will definitely reach the end, when $H_n$ firstexceeds~$100$. Our approximation to $H_n$ says that this will happenwhen $n$ is approximately\begindisplaye^{100-\gamma}\approx e^{99.423}\,.\enddisplayIn fact, exercise 9.|worm-finale| proves that the critical value of~$n$\g\vskip-17pt Well, they can't really go at it this long; the world will have endedmuch earlier, when the "Tower of Brahma" is fully transferred.\gis either $\lfloor e^{100-\gamma}\rfloor$ or$\lceil e^{100-\gamma}\rceil$. We can imagine $W$'s triumph when hecrosses the finish line at last, much to $K$'s chagrin, some287 decillion centuries after his long crawl began. (The rubber bandwill have stretched to more than $10^{27}$ light years long; itsmolecules will be pretty far apart.)\beginsection 6.4 Harmonic SummationNow let's look at some sums involving harmonic numbers, starting with a reviewof a few ideas we learned in Chapter~2. We proved in \equ(2.|harm-sum|)and \equ(2.|harm-sum+|) that\begindisplay \openup1pt\sum_{0\le k<n}H_k&=nH_n-n\,;\eqno\eqref|+harm-sum|\cr\sum_{0\le k<n}kH_k&={n(n-1)\over2}H_n\;-\;{n(n-1)\over4}\,.\eqno\eqref|+harm-sum+|\cr\enddisplayLet's be bold and take on a more general sum, which includes both of theseas special cases: What is the value of\begindisplay \advance\abovedisplayskip-1.1pt\advance\belowdisplayskip-1.1pt\sum_{0\le k<n}{k\choose m}H_k\,,\enddisplaywhen $m$ is a nonnegative integer?The approach that worked best for \eq(|+harm-sum|) and \eq(|+harm-sum+|) inChapter~2 was called {\it "summation by parts"}. We wrote the summand in theform $u(k)\Delta v(k)$, and we applied the general identity\begindisplay\sum\nolimits_a^b u(x)\Delta v(x)\,\delta x=u(x)v(x)\big\vert_a^b\;-\;\sum\nolimits_a^b v(x+1)\Delta u(x)\,\delta x\,.\eqno\enddisplayRemember? The sum that faces us now, $\sum_{0\le k<n}{k\choose m}H_k$,is a natural for this method because we can let\begindisplay \openup4ptu(k)&=H_k\,,}\hfill{\qquad \qquad\Delta u(k)&=H_{k+1}-H_k={1\over k+1}\,;\crv(k)&={k\choose m{+}1}\,,}\hfill{\qquad\qquad \Delta v(k)&={k{+}1\choose m{+}1}- {k\choose m{+}1}={k\choose m}\,.\cr\enddisplay(In other words, harmonic numbers have a simple $\Delta$and binomial coefficients havea simple $\Delta^{-1}$, so we're in business.) Plugging into \thiseq\ yields\begindisplay\sum_{0\le k<n}\!{k\choose m}H_k=\!\sum\nolimits_0^n{x\choose m}H_x\,\delta x&={x\choose m{+}1}H_x\bigg\vert_0^n-\sum\nolimits_0^n{x{+}1\choose m{+}1} {\delta x\over x{+}1}\cr&={n\choose m{+}1}H_n\,-\!\sum_{0\le k<n}\!{k{+}1\choose m{+}1}{1\over k{+}1}\,.\cr\enddisplayThe remaining sum is easy, since we can absorb the $(k+1)^{-1}$ usingour old standby, equation \equ(5.|bc-absorb|):\begindisplay\sum_{0\le k<n}{k+1\choose m+1}{1\over k+1}=\sum_{0\le k<n}{k\choose m}{1\over m+1}={n\choose m+1}{1\over m+1}\,.\enddisplayThus we have the answer we seek:\begindisplay\sum_{0\le k<n}{k\choose m}H_k={n\choose m+1}\biggl(H_n-{1\over m+1}\biggr)\,.\eqno\eqref|harm-sum++|\enddisplay(This checks nicelywith \eq(|+harm-sum|) and \eq(|+harm-sum+|) when $m=0$ and $m=1$.)The next example sum uses division instead of multiplication: Let ustry to evaluate\begindisplayS_n=\sum_{k=1}^n{H_k\over k}\,.\enddisplayIf we expand $H_k$ by its definition, we obtain a double sum,\begindisplayS_n=\sum_{1\le j\le k\le n}{1\over j\cdot k}\,.\enddisplayNow another method from Chapter 2 comes to our aid; equation\equ(2.|upper-triangle|) tells us that\begindisplayS_n=\half \Biggl(\biggl(\sum_{k=1}^n {1\over k}\biggr)^2 +\sum_{k=1}^n {1\over k^2}\Biggr)=\half\bigl(H_n^2+H_n^{(2)}\bigr)\,.\eqno\eqref|harm/k|\enddisplayIt turns out that we could alsohave obtained this answer in another way if we had triedto sum by parts (see exercise |sum-triangle-by-parts|).Now let's try our hands at a more difficult problem [|ungar|], which doesn'tsubmit to summation by parts:\begindisplayU_n=\sum_{k\ge1}{n\choose k}{(-1)^{k-1}\over k}(n-k)^n\,,\qquad\hbox{integer $n\ge1$}.\enddisplay(This sum doesn't explicitly mention harmonic numbers either;\g(Not to give the answer away or anything.)\gbut who knows when they might turn up?)We will solve this problem in two ways, one by grinding out the answer andthe other by being clever and/or lucky. First, the grinder's approach.We expand $(n-k)^n$ by the binomial theorem, so that the troublesome$k$ in the denominator will combine with the numerator:\begindisplayU_n&=\sum_{k\ge1}{n\choose k}{(-1)^{k-1}\over k}\sum_j{n\choose j}(-k)^jn^{n-j}\cr&=\sum_j{n\choose j}(-1)^{j-1}n^{n-j}\sum_{k\ge1}{n\choose k}(-1)^k k^{j-1}\,.\cr\enddisplayThis isn't quite the mess it seems, because the $k^{j-1}$ in the inner sumis a polynomial in~$k$, and identity \equ(5.|nth-diff|) tells us that we aresimply taking the "$n$th difference" of this polynomial. Almost; first we mustclean up a few things. For one, $k^{j-1}$ isn't a polynomial if $j=0$; so wewill need to split off that term and handle it separately. For another,we're missing the term $k=0$ from the formula for $n$th difference; thatterm is nonzero when $j=1$, so we had better restore it (and subtract it out again).The result is\begindisplayU_n&=\sum_{j\ge1}{n\choose j}(-1)^{j-1}n^{n-j}\sum_{k\ge0}{n\choose k}(-1)^kk^{j-1}\cr&\qquad -\sum_{j\ge1}{n\choose j}(-1)^{j-1}n^{n-j}{n\choose 0}0^{j-1}\cr\noalign{\vskip1pt}&\qquad -{n\choose 0}n^n\sum_{k\ge1}{n\choose k}(-1)^kk^{-1}\,.\cr\enddisplayOK, now the top line (the only remaining double sum) is zero: It'sthe sum of multiples of $n$th differences of polynomials of degree lessthan~$n$,and such $n$th differences are zero. The second line is zero except when$j=1$, when it equals $-n^n$. So the third line is the only residualdifficulty; we have reduced the original problem to a much simpler sum:\begindisplayU_n=n^n(T_n-1)\,,\qquad\hbox{where }T_n=\sum_{k\ge1}{n\choose k}{(-1)^{k-1}\over k}\,.\eqno\eqref|tn-def|\enddisplayFor example, $U_3={3\choose1}{8\over1}-{3\choose2}{1\over2}={45\over2}$; $T_3={3\choose1}{1\over1}-{3\choose2}{1\over2}+{3\choose3}{1\over3}={11\over6}$; hence $U_3=27(T_3-1)$ as claimed.How can we evaluate $T_n$? One way is to replace $n\choose k$ by${n-1\choose k}+{n-1\choose k-1}$, obtaining a simple recurrence for $T_n$in terms of $T_{n-1}$. But there's a more instructive way: We had asimilar formula in \equ(5.|recip-bc|), namely\begindisplay\sum_k{n\choose k}{(-1)^k\over x+k}= {n!\over x(x+1)\ldots(x+n)}\,.\enddisplay\looseness=-1If we subtract out the term for $k=0$ and set $x=0$, we get $-T_n$.So let's do~it:\begindisplay \ope

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -