⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chap6.tex

📁 Concrete_Mathematics_2nd_Ed_TeX_Source_Code
💻 TEX
📖 第 1 页 / 共 5 页
字号:
For example, eleven permutations of $\{1,2,3,4\}$ have two ascents:\begindisplay\advance\abovedisplayskip-2pt\advance\belowdisplayskip-2pt%\openup-2pt&1324\,,\quad 1423\,,\quad 2314\,,\quad2413\,,\quad 3412\,;\cr&1243\,,\quad 1342\,,\quad 2341\,;\qquad 2134\,,\quad3124\,,\quad 4123\,.\enddisplay(The first row lists the permutations with $\pi_1<\pi_2>\pi_3<\pi_4$; thesecond row lists those with $\pi_1<\pi_2<\pi_3>\pi_4$ and$\pi_1>\pi_2<\pi_3<\pi_4$.) Hence ${4\euler2}=11$. Table~|euler-triangle|lists the smallest Eulerian numbers; notice that the trademark sequenceis $1$,~$11$,~$11$,~$1$ this time. There can be at most $n-1$~ascents,when $n>0$, so we have ${n\euler n}=\[n=0]$ on the diagonal of the triangle.\topinsert\setbox0=\hbox{$\biggr>$}\def\\#1{\displaystyle{n\euler#1}\kern-\wd0}\table Euler's triangle.\tabref|euler-triangle|\offinterlineskip\halign to\hsize{\strut$\hfil#$\quad&\vrule#\kern-5pt\tabskip10pt plus 100pt& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$\tabskip\wd0\cr\omit&height 3pt\crn &&\\0&\\1&\\2&\\3&\\4&\\5&\\6&\\7&\\8&\\9\cr\omit&height 2pt\cr\noalign{\hrule width\hsize}\omit&height 3pt\cr0 && 1 \cr1 && 1 & 0 \cr2 && 1 & 1 & 0 \cr3 && 1 & 4 & 1 & 0 \cr4 && 1 & 11 & 11 & 1 & 0 \cr5 && 1 & 26 & 66 & 26 & 1 & 0 \cr6 && 1 & 57 & 302 & 302 & 57 & 1 & 0 \cr7 && 1 & 120 & 1191 & 2416 & 1191 & 120 & 1 & 0\kern-.5em \cr8 && 1 & 247 & 4293 & 15619 & 15619 & 4293 & 247 & 1\kern-.5em & 0 \cr9 && 1 & 502 & 14608 & 88234 & 156190 & 88234 & 14608 & \kern.5em502\kern-.5em & \ 1 & 0 \ \cr\omit&height 2pt\cr}\hrule width\hsize height.5pt\kern4pt\endinsert"Euler's triangle", like Pascal's, is symmetric between left and right.But in this case the symmetry law is slightly different:\begindisplay{n\euler k}={n\euler n-1-k}\,,\qquad\hbox{integer $n>0$};\eqno\eqref|eulerian-sym|\enddisplayThe permutation $\pi_1\pi_2\ldots\pi_n$ has~$n-1-k$ ascents if and only ifits ``reflection'' $\pi_n\ldots\pi_2\pi_1$ has $k$ ascents.Let's try to find a recurrence for $n\euler k$. Each permutation$\rho=\rho_1\ldots\rho_{n-1}$ of $\{1,\ldots,n-1\}$ leads to $n$ permutationsof $\{1,2,\ldots,n\}$ if we insert the new element~$n$ in all possible ways.Suppose we put $n$ in position~$j$, obtaining the permutation$\pi=\rho_1\ldots\rho_{j-1}\,n\,\rho_j\ldots\rho_{n-1}$. The number ofascents in $\pi$ is the same as the number in $\rho$,if $j=1$ or if $\rho_{j-1}<\rho_j$; it'sone greater than the number in~$\rho$, if$\rho_{j-1}>\rho_j$ or if $j=n$.Therefore $\pi$ has $k$ ascentsin a total of $(k+1){n-1\euler k}$ ways from permutations $\rho$ thathave $k$~ascents, plus a total of $\bigl((n-2)-(k-1)+1\bigr){n-1\euler k-1}$ waysfrom permutations $\rho$ that have $k-1$ ascents. The desired recurrence is\begindisplay{n\euler k}=(k+1){n-1\euler k}+(n-k){n-1\euler k-1}\,,\quad\hbox{integer $n>0$}.\eqno\eqref|eulerian-rec|\enddisplayOnce again we start the recurrence off by setting\begindisplay \postdisplaypenalty=10000{0\euler k}=\[k=0]\,,\qquad\hbox{integer $k$},\eqno\enddisplayand we will assume that ${n\euler k}=0$ when $k<0$."Eulerian numbers" are useful primarily because they provide an unusualconnection between ordinary powers and consecutive binomial coefficients:\begindisplayx^n=\sum_k{n\euler k}{x+k\choose n}\,,\qquad\hbox{integer $n\ge0$}.\eqno\eqref|expand-ord-to-consec|\enddisplay(This is called ``"Worpitzky"'s identity'' [|worpitzky|].)\g Western scholars have recently learned of a significant Chinese\looseness=-1book by "Li" Shan-Lan~[|li-shan-lan|; |martzloff|, pages\kern-.5em\null\par320--325],published in 1867, which containsthe first known appearance of formula~\eq(|expand-ord-to-consec|).\gFor example, we have\begindisplay \openup5pt \tightplusx^2&={x\choose2}+{x+1\choose2}\,,\crx^3&={x\choose3}+4{x+1\choose3}+{x+2\choose3}\,,\crx^4&={x\choose4}+11{x+1\choose4}+11{x+2\choose4}+{x+3\choose4}\,,\cr\enddisplayand so on. It's easy to prove \eq(|expand-ord-to-consec|) byinduction (exercise |prove-eulerian-expansion|).Incidentally, \thiseq\ gives us yet another way to obtain the sum of the"!sum of consecutive squares"first~$n$~squares: We have $k^2={2\euler0}{k\choose2}+{2\euler1}{k+1\choose2} ={k\choose2}+{k+1\choose2}$, hence\begindisplay \let\displaystyle=\textstyle \openup7pt1^2+2^2+\cdots+n^2&=\bigl({1\choose2}+{\2\choose2}+\cdots+{n\choose2}\bigr)+\bigl({\2\choose2}+{3\choose2}+\cdots+{n+1\choose2}\bigr)\cr&={n+1\choose3}+{n+\2\choose3}={1\over6}(n+1)n\bigl((n-1)+(n+2)\bigr)\,.\enddisplayThe Eulerian recurrence \eq(|eulerian-rec|) is a bit more complicated thanthe Stirling recurrences \eq(|stirl2-rec|) and \eq(|stirl1-rec|), sowe don't expect the numbers $n\euler k$ to satisfy as many simple identities.Still, there are a few:\begindisplay \openup5pt{n\euler m}&=\sum_{k=0}^m{n+1\choose k}(m+1-k)^n(-1)^k\,;\eqno\eqref|eulerian-expansion|\crm!\,{n\brace m}&=\sum_k{n\euler k}{k\choose n-m}\,;\eqno\eqref|expand-stirling-to-eulerian|\cr{n\euler m}&=\sum_k{n\brace k}{n-k\choose m}(-1)^{n-k-m}\,k!\,.\eqno\eqref|expand-eulerian-to-stirling|\cr\enddisplayIf we multiply \eq(|expand-stirling-to-eulerian|) by $z^{n-m}$ and sum on~$m$,we get $\sum_m{n\brace m}m!\,z^{n-m}=\sum_k{n\euler k}(z+1)^k$.Replacing $z$ by $z-1$ and equating coefficients of $z^k$ gives\eq(|expand-eulerian-to-stirling|). Thus the last two of these identitiesare essentially equivalent. The first identity,\eq(|eulerian-expansion|), gives us special valueswhen $m$ is small:\begindisplay \postdisplaypenalty=-150 \tightplus{n\euler0}=1\,;\quad{n\euler1}=2^n-n-1\,;\quad{n\euler2}=3^n-(n+1)2^n+{n+1\choose2}\,.\enddisplay\topinsert\setbox0=\hbox{$\biggr>\mskip-7mu\biggr>$}\def\\#1{\displaystyle{\Euler n#1}\kern-\wd0}\table Second-order Eulerian triangle.\tabref|euler2-triangle|\offinterlineskip\halign to\hsize{\strut$\hfil#$\quad&\vrule#\kern-5pt\tabskip10pt plus 100pt& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$\tabskip\wd0\cr\omit&height 3pt\crn &&\\0&\ \\1&\\2&\\3&\\4&\\5&\kern-.3em\\6\kern.3em&\\7&\ \\8\cr\omit&height 2pt\cr\noalign{\hrule width\hsize}\omit&height 3pt\cr0 && 1 \cr1 && 1 & 0 \cr2 && 1 & 2 & 0 \cr3 && 1 & 8 & 6 & 0 \cr4 && 1 & 22 & 58 & 24 & 0 \cr5 && 1 & 52 & 328 & 444 & 120 & 0 \cr6 && 1 & 114 & 1452 & 4400 & 3708 & 720 & 0 \cr7 && 1 & 240 & 5610 & 32120 & 58140 & 33984 & 5040 & 0\kern-1em \cr8 && 1 & 494 & \!19950 & \!195800 & \!644020 & \!785304 & \!341136 & \!40320\kern-1em & 0 \cr\omit&height 2pt\cr}\hrule width\hsize height.5pt\kern4pt\endinsertWe needn't dwell further on Eulerian numbers here; it's usually sufficientsimply to know that they exist, and to have a list of basic identitiesto fall back on when the need arises. However, before we leave this topic,we should take note of yet another triangular pattern of coefficients,shown in Table~|euler2-triangle|.We call these ``second-order Eulerian numbers'' $\Euler nk$, because"!Eulerian numbers, second order" \tabref|nn:euler2|%they satisfy a recurrence similar to \eq(|eulerian-rec|) but with$n$ replaced by $2n-1$ in one place:\begindisplay\Euler nk=(k+1)\Euler{n-1}k+(2n-1-k)\Euler{n-1}{k-1}\,.\eqno\eqref|eulerian2-rec|\enddisplayThese numbers have a curious combinatorial interpretation, first noticedby "Gessel" and "Stanley"~[|gessel-stanley|]:If we form permutations of the multiset $\{1,1,\allowbreak2,2,\allowbreak\ldots,n,n\}$ withthe special property that all numbers between the two occurrences of~$m$are greater than~$m$, for $1\le m\le n$, then $\Euler nk$ is thenumber of such permutations that have $k$ ascents.For example, there are eight suitablesingle-ascent permutations of $\{1,1,2,2,3,3\}$:\begindisplay113322,\;133221,\;221331,\;221133,\;223311,\;233211,\;331122,\;331221.\enddisplayThus $\Euler31=8$. The multiset $\{1,1,2,2,\ldots,n,n\}$ has a total of\begindisplay\sum_k\Euler nk=(2n-1)(2n-3)\ldots(1)={(2n)\_n\over2^n}\eqno\enddisplaysuitable permutations,"!product of odd numbers"because the two appearances of $n$ must be adjacent and there are $2n-1$places to insert them within a permutation for $n-1$.For example, when $n=3$ the permutation $1221$ has five insertion points,yielding $331221$, $133221$, $123321$, $122331$, and $122133$.Recurrence \eq(|eulerian2-rec|) can beproved by extending the argument we used for ordinary Eulerian numbers.Second-order Eulerian numbers are important chiefly because of their connectionwith Stirling numbers~[|ginsburg|]: We have, by induction on~$n$,\begindisplay \openup4pt{x\brace x-n}&=\sum_k\Euler nk{x+n-1-k\choose2n}\,,}\hfill{&\qquad\hbox{integer $n\ge0$;}\eqno\eqref|gen-st2|\cr{x\brack@x-n@}&=\sum_k\Euler nk{x+k\choose2n}\,,}\hfill{&\qquad\hbox{integer $n\ge0$.}\eqno\eqref|gen-st1|\cr\enddisplayFor example,\begindisplay \openup4pt&{x\brace x{-}1}={x\choose2}\,,}\hfill{\qquad&{x\brack x{-}1}={x\choose2}\,;\cr&{x\brace x{-}2}={x{+}1\choose4}+2{x\choose4}\,,}\hfill{\qquad&{x\brack x{-}2}={x\choose4}+2{x{+}1\choose4}\,;\cr&{x\brace x{-}3}={x{+2}\choose6}+8{x{+}1\choose6}+6{x\choose6}\,,}\hidewidth{\cr&&{x\brack x{-}3}={x\choose6}+8{x{+}1\choose6}+6{x{+}2\choose6}\,.}\hidewidth{\cr\enddisplay(We already encountered the case $n=1$ in \eq(|stirl-nn-1|).)These identities hold whenever $x$ is an integer and $n$ is a nonnegativeinteger. Since the right-hand sides are polynomials in~$x$, we can use\eq(|gen-st2|) and \eq(|gen-st1|)to define Stirling numbers $x\brace x-n$ and $x\brack x-n$"!Stirling numbers, generalized"for arbitrary real (or complex) values of~$x$.\smallskipIf $n>0$, these polynomials $x\brace x-n$ and $x\brack x-n$ are zero when$x=0$, $x=1$, \dots, and~$x=n$; therefore they are divisible by$(x-0)$, $(x-1)$, \dots, and~$(x-n)$. It's interesting to look at what's leftafter these known factors are divided out. We define"!Bernoulli numbers, generalized, \string\see Stirling polynomials"the {\it"Stirling polynomials"\/} $\sigma_n(x)$ by the rule\begindisplay\sigma_n(x)={x\brack x-n}\,\big/\,\bigl(x(x-1)\ldots(x-n)\bigr)\,.\eqno\eqref|stirl-poly-def|\enddisplay(The degree of $\sigma_n(x)$ is $n-1$.) The first few cases are\g\hbadness=2000\vskip18pt So $1/x$ is a \hbox{polynomial}?\medskip(Sorry about that.)\g\begindisplay \openup1pt\sigma_0(x)&=1/x\,;\cr\sigma_1(x)&=1/2\,;\cr\sigma_2(x)&=(3x-1)/24\,;\cr\sigma_3(x)&=(x^2-x)/48\,;\cr\sigma_4(x)&=(15x^3-30x^2+5x+2)/5760\,.\cr\enddisplayThey can be computed via the second-order Eulerian numbers; for example,\begindisplay\sigma_3(x)&=\bigl((x{-}4)(x{-}5)+8(x{-}4)(x{+}1)+6(x{+}2)(x{+}1)\bigr)/6!\,.\enddisplay\topinsert\table Stirling convolution formulas.\tabref|stirling-convolutions|\begindisplay\abovedisplayskip=-2pt \belowdisplayskip=5pt \openup2pt% \advance\baselineskip0pt plus .5pt  \advance\lineskip0pt plus .5ptrs\sum_{k=0}^n\sigma_k(r+tk)\,\sigma_{n-k}(s+t(n-k))&=(r+s)@\sigma_n(r+s+tn) \eqno\eqref|st-conv-2a|\crs\sum_{k=0}^n \,k@\sigma_k(r+tk)\,\sigma_{n-k}(s+t(n-k))&=n@\sigma_n(r+s+tn) \eqno\cr\noalign{\vskip1pt}{n\brace m}\hskip4em&\hskip-4em =(-1)^{n-m+1}{n!\over(m-1)!}\sigma_{n-m}(-m)\eqno\eqref|s2-to-sigma|\cr\noalign{\vskip3pt}{n\brack@m@}\hskip4em&\hskip-4em ={n!\over(m-1)!}\sigma_{n-m}(n)\eqno\eqref|s1-to-sigma|\cr\enddisplay\kern2pt\hrule width\hsize height.5pt\kern4pt\endinsertIt turns out that these polynomials satisfy two very pretty identities:\begindisplay\left(ze^z\over e^z-1\right)^{\!x}&=x\sum_{n\ge0}\sigma_n(x)\,z^n\,;\eqno\eqref|stirl-poly-gf|\cr\left({1\over z}\ln{1\over1-z}\right)^{\!x}&=x\sum_{n\ge0}\sigma_n(x+n)\,z^n\,.\eqno\cr\enddisplayAnd in general, if $\Sscr_t(z)$ is the power series that satisfies\begindisplay\ln\bigl(1-z@\Sscr_t(z)^{t-1}\bigr)=-z@\Sscr_t(z)^t\,,\eqno\eqref|t-series-stirl|\enddisplaythen

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -