⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chap6.tex

📁 Concrete_Mathematics_2nd_Ed_TeX_Source_Code
💻 TEX
📖 第 1 页 / 共 5 页
字号:
\qquad\hbox{integer $n>0$}.\eqno\eqref|stirl1-rec|\enddisplayThis is the addition-formula analog that generates Table |stirl1-triangle|.Comparison of \thiseq\ and \eq(|stirl2-rec|) shows that the first termon the right side is multiplied by its upper index $(n-1)$ in thecase of Stirling cycle numbers, but by its lower index~$k$in the case of Stirling subset numbers. We can thereforeperform ``"absorption"'' in terms like $n{n\brack k}$ and $k{n\brace k}$,when we do proofs by mathematical induction.Every permutation is equivalent to a set of cycles. For example, consider thepermutation that takes $123456789$ into $384729156$. We can convenientlyrepresent it in two rows,\begindisplay&1\,2\,3\,4\,5\,6\,7\,8\,9\cr&3\,8\,4\,7\,2\,9\,1\,5\,6\,,\cr\enddisplayshowing that $1$ becomes $3$ and $2$ becomes $8$, etc. The cycle structurecomes about because $1$ becomes $3$, which becomes~$4$, which becomes~$7$,which becomes the original element~$1$; that'sthe cycle $[1,3,4,7]$. Another cycle in this permutation is $[2,8,5]$;still another is $[6,9]$. Therefore the permutation $384729156$ isequivalent to the cycle arrangement\begindisplay[1,3,4,7]\,[2,8,5]\,[6,9]\,.\enddisplayIf we have any permutation $\pi_1\pi_2\ldots\pi_n$ of $\{1,2,\ldots,n\}$,every element is in a unique cycle. For if we start with $m_0=m$ andlook at $m_1=\pi_{m_0}$, $m_2=\pi_{m_1}$, etc., we must eventuallycome back to $m_k=m_0$. (The numbers must repeat sooner or later,and the first number to reappear must be $m_0$ because we know theunique predecessors of the other numbers $m_1$, $m_2$, \dots,~$m_{k-1}$.)Therefore every permutation defines a cycle arrangement. Conversely, everycycle arrangement obviously defines a permutation if we reverse theconstruction, and this one-to-onecorrespondence shows that permutations and cycle arrangements areessentially the same thing.Therefore $n\brack k$ is the number of permutations of $n$ objectsthat contain exactly $k$ cycles. If we sum $n\brack k$ over all~$k$, wemust get the total number of permutations:\begindisplay\sum_{k=0}^n{n\brack k}=n!\,,\qquad\hbox{integer $n\ge0$}.\eqno\eqref|sum-to-factorial|\enddisplayFor example, $6+11+6+1=24=4!$.Stirling numbers are useful because the recurrence relations \eq(|stirl2-rec|)and \eq(|stirl1-rec|) arise in a variety of problems. For example, if wewant to represent ordinary powers $x^n$ by falling powers $x\_n$, wefind that the first few cases are\begindisplayx^0&=x\_0\,;\crx^1&=x\_1\,;\crx^2&=x\_2+x\_1\,;\crx^3&=x\_3+3x\_2+x\_1\,;\crx^4&=x\_4+6x\_3+7x\_2+x\_1\,.\cr\enddisplayThese coefficients look suspiciouslylike the numbers in Table |stirl2-triangle|,reflected between left and right; therefore we can be pretty confidentthat the general formula is\g\vskip20pt We'd better define\smallskip${n\brace k}={n\brack k}=0$\smallskipwhen $k<0@$ and $n\ge0$.\g\begindisplayx^n=\sum_k{n\brace k}x\_k\,,\qquad\hbox{integer $n\ge0$.}\eqno\eqref|expand-ord-to-falling|\enddisplayAnd sure enough,a simple proof by induction clinches the argument: We have $x\cdt x\_k=x\_{k+1}+kx\_k$, because $x\_{k+1}=x\_k@(x-k)$; hence $x\cdt x^{n-1}$ is\begindisplay \openup3ptx\sum_k{n-1\brace k}x\_k&=\sum_k{n-1\brace k}x\_{k+1}+\sum_k{n-1\brace k}kx\_k\cr&=\sum_k{n-1\brace k-1}x\_k+\sum_k{n-1\brace k}kx\_k\cr&=\sum_k\biggl(k{n-1\brace k}+{n-1\brace k-1}\biggr)x\_k =\sum_k{n\brace k}x\_k\,.\cr\enddisplayIn other words, Stirling subset numbers are the coefficients of"factorial powers" that yield ordinary powers.We can go the other way too,because Stirling cycle numbers are the coefficients of ordinarypowers that yield factorial powers:\begindisplayx\_^0&=x^0\,;\crx\_^1&=x^1\,;\crx\_^2&=x^2+x^1\,;\crx\_^3&=x^3+3x^2+2x^1\,;\crx\_^4&=x^4+6x^3+11x^2+6x^1\,.\cr\enddisplayWe have $(x+n-1)\cdt x^k=x^{k+1}+(n-1)x^k$, so a proof like the one justgiven shows that\begindisplay(x+n-1)x\_^{n-1}=(x+n-1)\sum_k{n-1\brack k}x^k=\sum_k{n\brack k}x^k\,.\enddisplayThis leads to a proof by induction of the general formula\begindisplayx\_^n=\sum_k{n\brack k}x^k\,,\qquad\hbox{integer $n\ge0$.}\eqno\eqref|expand-rising-to-ord|\enddisplay(Setting $x=1$ gives \eq(|sum-to-factorial|) again.)But wait, you say. This equation involves rising factorial powers $x\_^n$,while \eq(|expand-ord-to-falling|) involves falling factorials $x\_n$.What if we want to express $x\_n$ in terms of ordinary powers, or if wewant to express $x^n$in terms of rising powers? Easy; we just throw in some minus signs and get\begindisplay \openup4ptx^n&=\sum_k{n\brace k}(-1)^{n-k}x\_^k\,,\qquad\hbox{integer $n\ge0$};\eqno\eqref|expand-ord-to-rising|\crx\_n&=\sum_k{@n@\brack k}(-1)^{n-k}x^k\,,\qquad\hbox{integer $n\ge0$}.\eqno\eqref|expand-falling-to-ord|\cr\enddisplayThis works because, for example, the formula\begindisplayx\_4=x(x-1)(x-2)(x-3)=x^4-6x^3+11x^2-6x\enddisplayis just like the formula\begindisplayx\_^4=x(x+1)(x+2)(x+3)=x^4+6x^3+11x^2+6x\enddisplaybut with alternating signs. The general identity\begindisplay \postdisplaypenalty=10000x\_n=(-1)^n(-x)\_^n\eqno\enddisplayof exercise 2.|rising-and-falling|converts \eq(|expand-ord-to-falling|) to \eq(|expand-ord-to-rising|) and\eq(|expand-rising-to-ord|) to \eq(|expand-falling-to-ord|) if we negate~$x$.\pageinsert % have to place this carefully so that \eqnos don't get out of order!\table Basic "Stirling number identities", for integer $n\ge0$.\tabref|stirling-id1|\begindisplay\abovedisplayskip=-2pt \belowdisplayskip=5pt \openup4pt% \advance\baselineskip0pt plus .5pt  \advance\lineskip0pt plus .5pt\noalign{\hbox{Recurrences:}}{n\brace k}&=k{n-1\brace k}+{n-1\brace k-1}\,.\cr{@n@\brack k}&=(n-1){n-1\brack k}+{n-1\brack k-1}\,.\cr\noalign{\smallskip\hbox{Special values:}}{n\brace 0}&={@n@\brack 0}=\[n=0]\,.\cr{n\brace 1}&=\[n>0]\,;\quad}\hfill{{@n@\brack 1}&=(n-1)!\,\[n>0]\,.\cr{n\brace 2}&=(2^{n-1}-1)\[n>0]\,;\qquad}\hfill{{@n@\brack 2}&=(n-1)!\,H_{n-1}\,\[n>0]\,.\cr{n\brace n-1}&={n\brack@n-1@}={n\choose 2}\,.\cr{n\brace n}&={@n@\brack n}={n\choose n}=1\,.\cr{n\brace k}&={@n@\brack k}={n\choose k}=0\,,\qquad\hbox{if $k>n$}.}\hidewidth{\cr\noalign{\smallskip\hbox{Converting between powers:}}x^n&=\sum_k{n\brace k}x\_k=\sum_k{n\brace k}(-1)^{n-k}x\_^k\,.}\hidewidth{\crx\_n&=\sum_k{@n@\brack k}(-1)^{n-k}x^k\,;\crx\_^n&=\sum_k{@n@\brack k}x^k\,.\cr\noalign{\smallskip\hbox{Inversion formulas:}}\sum_k{@n@\brack k}{k\brace m}(-1)^{n-k}=\[m=n]\,;}\hidewidth{\cr\sum_k{n\brace k}{k\brack m}(-1)^{n-k}=\[m=n]\,.}\hidewidth{\cr\enddisplay\hrule width\hsize height.5pt\kern4pt\endinsert\pageinsert\table Additional Stirling number identities, for integers $l,m,n\ge0$.\tabref|stirling-id2|\begindisplay\abovedisplayskip=-1pt \belowdisplayskip=5pt \openup3pt% \advance\displayindent-\parindent\advance\displaywidth\parindent% \advance\baselineskip0pt plus .5pt  \advance\lineskip0pt plus .5pt{n+1\brace m+1}&=\sum_k{n\choose k}{k\brace m}\,.\eqno\eqref|sid-2|\cr{n+1\brack m+1}&=\sum_k{@n@\brack k}{k\choose m}\,.\eqno\eqref|sid-1|\cr{n\brace m}&=\sum_k{n\choose k}{k+1\brace m+1}(-1)^{n-k}\,.\eqno\eqref|sid-4|\cr\noalign{\kern\prevdepth\g\vskip10pt$n^m(-1)^{n-m}{n\brack m}$\par\vskip6pt$\quad=\sum\limits_k\!{\,n\,\brack\, k\,}{-m\choose k-m}n^k\,.$\kern-12pt\null\g}{n\brack@m@}&=\sum_k{n+1\brack k+1}{k\choose m}(-1)^{m-k}\,.\eqno\eqref|sid-3|\crm!\,{n\brace m}&=\sum_k{m\choose k}k^n(-1)^{m-k}\,.\eqno\eqref|sid-5|\cr{n+1\brace m+1}&=\sum_{k=0}^n{k\brace m}(m+1)^{n-k}\,.\eqno\eqref|sid-7|\cr{n+1\brack m+1}&=\sum_{k=0}^n{k\brack m}n\_{n-k}=n!\sum_{k=0}^n{k\brack m}\big/k!\,.\eqno\eqref|sid-6|\cr{m+n+1\brace m}&=\sum_{k=0}^m\,k\,{n+k\brace k}\,.\eqno\eqref|sid-9|\cr{m+n+1\brack m}&=\sum_{k=0}^m\,(n+k){n+k\brack k}\,.\eqno\eqref|sid-8|\cr{n\choose m}&=\sum_k{n+1\brace k+1}{k\brack m}(-1)^{m-k}\,.\eqno\eqref|sid-10|\cr\noalign{\kern\prevdepth\g\vskip17pt Also,\par\vskip6pt${n\choose m}(n-1)\_{n-m}$\par\vskip6pt$\quad=\sum_k{\,n\,\brack\,k\,}{k\brace m}\,,$\par\vskip6pta generalization of~\eq(|sum-to-factorial|).\g}n\_{n-m}\,\[n\ge m]&=\sum_k{n+1\brack k+1}{k\brace m}(-1)^{m-k}\,.\eqno\eqref|sid-11|\cr{n\brace n-m}&=\sum_k{m-n\choose m+k}{m+n\choose n+k}{m+k\brack k}\,.\eqno\eqref|sid-13|\cr{n\brack@n-m@}&=\sum_k{m-n\choose m+k}{m+n\choose n+k}{m+k\brace k}\,.\eqno\eqref|sid-12|\cr\indent{n\brace l+m}{l+m\choose l}&=\sum_k{k\brace l}{n-k\brace m}{n\choose k}\,.\eqno\eqref|sid-15|\cr{n\brack@l+m@}{l+m\choose l}&=\sum_k{k\brack l}{n-k\brack m}{n\choose k}\,.\eqno\eqref|sid-14|\cr\enddisplay\hrule width\hsize height.5pt\kern4pt\endinsertWe can remember when to stick the $(-1)^{n-k}$ factor into a formulalike \eq(|expand-ord-to-rising|) because there's anatural ordering of powers when $x$ is large:\begindisplayx\_^n>x^n>x\_n\,,\qquad\hbox{for all $x>n>1$}.\eqno\enddisplayThe Stirling numbers $n\brack k$ and $n\brace k$ are nonnegative, so we haveto use minus signs when expanding a ``small'' power in terms of ``large'' ones.We can plug \eq(|expand-rising-to-ord|) into \eq(|expand-ord-to-rising|) andget a double sum:\begindisplayx^n=\sum_k{n\brace k}(-1)^{n-k}x\_^k =\sum_{k,m}{n\brace k}{k\brack m}(-1)^{n-k}x^m\,.\enddisplayThis holds for all $x$, so the coefficients of $x^0$, $x^1$, \dots,~$x^{n-1}$,$x^{n+1}$, $x^{n+2}$,~\dots\on the right must all be zero and we must have the identity\begindisplay\sum_k{n\brace k}{k\brack m}(-1)^{n-k}=\[m=n]\,,\qquad\hbox{integers $m,n\ge0$}.\eqno\eqref|stirl-inv|\enddisplayStirling numbers, like binomial coefficients, satisfy many surprisingidentities. But these identities aren't as versatile as the ones we hadin Chapter~5, so they aren't applied nearly as often. Therefore it'sbest for us just to list the simplest ones, for future reference whena tough Stirling nut needs to be cracked. Tables |stirling-id1|%\g Or when a crusty Stirling problem needs to be polished off, like%Stirling silver.\gand |stirling-id2| contain the formulas that are most frequently useful;the principal identities we have already derived are repeated there.When we studied binomial coefficients in Chapter~5, we found that it wasadvantageous to define $n\choose k$ for negative~$n$ in such a way thatthe identity ${n\choose k}={n-1\choose k}+{n-1\choose k-1}$ is valid withoutany restrictions. Using that identity to extend the$n\choose k$'s beyond those with combinatorial significance,we discovered (in Table~|pascal-triangle-up|) that Pascal'striangle essentially reproduces itself in a rotated form when weextend it upward. Let's try the same thing with "Stirling's triangles": Whathappens if we decide that the basic recurrences\begindisplay \openup5pt \advance\abovedisplayskip-3pt{n\brace k}&=k@{n-1\brace k}+{n-1\brace k-1}\cr{n\brack k}&=(n-1){n-1\brack k}+{n-1\brack k-1}\cr\enddisplayare valid for all integers $n$ and $k$? The solution becomes unique if wemake the reasonable additional stipulations that\begindisplay{0\brace k}={0\brack k}=\[k=0]\And {n\brace0}={n\brack0}=\[n=0]\,.\eqno\enddisplayIn fact, a surprisingly pretty pattern emerges:Stirling's triangle for cycles appears above Stirling's triangle for subsets,and vice versa! The two kinds of Stirling numbers arerelated by an extremely simple law [|knuth-tnn|, |knuth-cp|]:\begindisplay\advance\abovedisplayskip-3pt\advance\belowdisplayskip-3pt{@n@\brack k}={-k\brace-n}\,,\qquad\hbox{integers $k,n$}.\eqno\eqref|stirl-negation|\enddisplayWe have ``"duality",\qback'' something like the relations between min and max,between $\lfloor x \rfloor$ and~$\lceil x\rceil$, between $x\_n$and~$x\_^n$, between gcd and lcm. It's easy to check that both of the recurrences${n\brack k}=(n-1){n-1\brack k}+{n-1\brack k-1}$ and${n\brace k}=k{n-1\brace k}+{n-1\brace k-1}$ amount to the same thing, underthis correspondence.\topinsert\setbox0=\hbox{$\biggr\}$}\def\\#1{\displaystyle{n\brace#1}\kern-\wd0}\table Stirling's triangles in tandem.\tabref|stirl-triangles|\offinterlineskip\halign to\hsize{\strut$\hfil#$\quad&\vrule#\kern-5pt\tabskip10pt plus 100pt& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$& \hfil$#$\tabskip\wd0\cr\omit&height 3pt\crn &&\\{-5}&\\{-4}&\\{-3}&\\{-2}&\\{-1}&\\0&\\1&\\2&\\3&\\4&\\5\cr\omit&height 2pt\cr\noalign{\hrule width\hsize}\omit&height 3pt\cr-5&& 1 \cr-4&& 10 & 1 \cr-3&& 35 & 6 & 1 \cr-2&& 50 & 11 & 3 & 1 \cr-1&& 24 & 6 & 2 & 1 & 1 \cr0 && 0 & 0 & 0 & 0 & 0 & 1 \cr1 && 0 & 0 & 0 & 0 & 0 & 0 & 1 \cr2 && 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \cr3 && 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 1 \cr4 && 0 & 0 & 0 & 0 & 0 & 0 & 1 & 7 & 6 & 1 \cr5 && 0 & 0 & 0 & 0 & 0 & 0 & 1 & 15 & 25 & 10 & 1 \ \cr\omit&height 2pt\cr}\hrule width\hsize height.5pt\kern4pt\endinsert\beginsection 6.2 Eulerian NumbersAnother triangle of values pops up now and again, this one due to "Euler"[|euler-eulerian|, \S13; |euler-diff-calc|, page 485], and we denote itselements by $n\euler k$. The angle brackets in this case suggest``less than'' and ``greater than'' signs; $n\euler k$ is the number ofpermutations $\pi_1\pi_2\ldots\pi_n$ of $\{1,2,\ldots,n\}$ thathave $k$ {\it"ascents"}, namely, $k$~places where $\pi_j<\pi_{j+1}$."!descents, \string\see ascents""!notation, new"(Caution: This notation is less standard than our notations\g(Knuth [|knuth3|, first edition] used\smallskip $n\euler k+1$ for $n\euler k$.)\g\tabref|nn:euler|%$n\brack k$, $n\brace k$ for Stirling numbers. But we'll see that it makes goodsense.)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -