📄 complex
字号:
// complex standard header
#pragma once
#ifndef _COMPLEX_
#define _COMPLEX_
#ifndef RC_INVOKED
#include <ymath.h>
#include <ccomplex> /* dummy if not C99 library */
#include <cmath>
#include <sstream>
#pragma pack(push,_CRT_PACKING)
#pragma warning(push,3)
#pragma warning(disable: 4244)
_C_STD_BEGIN
#ifndef _C_COMPLEX_T
#define _C_COMPLEX_T
typedef struct _C_double_complex
{ /* double complex */
double _Val[2];
} _C_double_complex;
typedef struct _C_float_complex
{ /* float complex */
float _Val[2];
} _C_float_complex;
typedef struct _C_ldouble_complex
{ /* long double complex */
long double _Val[2];
} _C_ldouble_complex;
#endif /* _C_COMPLEX_T */
_C_STD_END
// COMPLEX _Val OFFSETS
#define _RE 0
#define _IM 1
_STD_BEGIN
typedef _CSTD _C_double_complex _Dcomplex_value;
typedef _CSTD _C_float_complex _Fcomplex_value;
typedef _CSTD _C_ldouble_complex _Lcomplex_value;
template<class _Ty>
class complex;
template<> class complex<float>;
template<> class complex<double>;
template<> class complex<long double>;
// TEMPLATE CLASS _Ctraits
template<class _Ty>
class _Ctraits
{ // complex traits for _Ty
public:
static _Ty _Cosh(_Ty _Left, _Ty _Right)
{ // return cosh(_Left) * _Right
return (_CSTD _Cosh((double)_Left, (double)_Right));
}
static short _Exp(_Ty *_Pleft, _Ty _Right, short _Exponent)
{ // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
double _Tmp = (double)*_Pleft;
short _Ans = _CSTD _Exp(&_Tmp, (double)_Right, _Exponent);
*_Pleft = (_Ty)_Tmp;
return (_Ans);
}
static _Ty _Infv(_Ty)
{ // return infinity
return (_CSTD _Inf._Double);
}
static bool _Isinf(_Ty _Left)
{ // test for infinity
double _Tmp = (double)_Left;
return (_CSTD _Dtest(&_Tmp) == _INFCODE);
}
static bool _Isnan(_Ty _Left)
{ // test for NaN
double _Tmp = (double)_Left;
return (_CSTD _Dtest(&_Tmp) == _NANCODE);
}
static _Ty _Nanv(_Ty)
{ // return NaN
return (_CSTD _Nan._Double);
}
static _Ty _Sinh(_Ty _Left, _Ty _Right)
{ // return sinh(_Left) * _Right
return (_CSTD _Sinh((double)_Left, (double)_Right));
}
static _Ty atan2(_Ty _Yval, _Ty _Xval)
{ // return atan(_Yval / _Xval)
return (_CSTD atan2((double)_Yval, (double)_Xval));
}
static _Ty cos(_Ty _Left)
{ // return cos(_Left)
return (_CSTD cos((double)_Left));
}
static _Ty exp(_Ty _Left)
{ // return exp(_Left)
return (_CSTD exp((double)_Left));
}
static _Ty ldexp(_Ty _Left, int _Exponent)
{ // return _Left * 2 ^ _Exponent
return (_CSTD ldexp((double)_Left, _Exponent));
}
static _Ty log(_Ty _Left)
{ // return log(_Left)
return (_CSTD log((double)_Left));
}
static _Ty pow(_Ty _Left, _Ty _Right)
{ // return _Left ^ _Right
return (_CSTD pow((double)_Left, (double)_Right));
}
static _Ty sin(_Ty _Left)
{ // return sin(_Left)
return (_CSTD sin((double)_Left));
}
static _Ty sqrt(_Ty _Left)
{ // return sqrt(_Left)
return (_CSTD sqrt((double)_Left));
}
static _Ty tan(_Ty _Left)
{ // return tan(_Left)
return (_CSTD tan((double)_Left));
}
};
// CLASS _Ctraits<long double>
template<> class _Ctraits<long double>
{ // complex traits for long double
public:
typedef long double _Ty;
static _Ty _Cosh(_Ty _Left, _Ty _Right)
{ // return cosh(_Left) * _Right
return (_CSTD _LCosh(_Left, _Right));
}
static short _Exp(_Ty *_Pleft, _Ty _Right, short _Exponent)
{ // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
return (_CSTD _LExp(_Pleft, _Right, _Exponent));
}
static _Ty _Infv(_Ty)
{ // return infinity
return (_CSTD _LInf._Long_double);
}
static bool _Isinf(_Ty _Left)
{ // test for infinity
return (_CSTD _LDtest(&_Left) == _INFCODE);
}
static bool _Isnan(_Ty _Left)
{ // test for NaN
return (_CSTD _LDtest(&_Left) == _NANCODE);
}
static _Ty _Nanv(_Ty)
{ // return NaN
return (_CSTD _LNan._Long_double);
}
static _Ty _Sinh(_Ty _Left, _Ty _Right)
{ // return sinh(_Left) * _Right
return (_CSTD _LSinh(_Left, _Right));
}
static _Ty atan2(_Ty _Yval, _Ty _Xval)
{ // return atan(_Yval / _Xval)
return (_CSTD atan2l(_Yval, _Xval));
}
static _Ty cos(_Ty _Left)
{ // return cos(_Left)
return (_CSTD cosl(_Left));
}
static _Ty exp(_Ty _Left)
{ // return exp(_Left)
return (_CSTD expl(_Left));
}
static _Ty ldexp(_Ty _Left, int _Exponent)
{ // return _Left * 2 ^ _Exponent
return (_CSTD ldexpl(_Left, _Exponent));
}
static _Ty log(_Ty _Left)
{ // return log(_Left)
return (_CSTD logl(_Left));
}
static _Ty pow(_Ty _Left, _Ty _Right)
{ // return _Left ^ _Right
return (_CSTD powl(_Left, _Right));
}
static _Ty sin(_Ty _Left)
{ // return sin(_Left)
return (_CSTD sinl(_Left));
}
static _Ty sqrt(_Ty _Left)
{ // return sqrt(_Left)
return (_CSTD sqrtl(_Left));
}
static _Ty tan(_Ty _Left)
{ // return tan(_Left)
return (_CSTD tanl(_Left));
}
};
// CLASS _Ctraits<double>
template<> class _Ctraits<double>
{ // complex traits for double
public:
typedef double _Ty;
static _Ty _Cosh(_Ty _Left, _Ty _Right)
{ // return cosh(_Left) * _Right
return (_CSTD _Cosh(_Left, _Right));
}
static short _Exp(_Ty *_Pleft, _Ty _Right, short _Exponent)
{ // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
return (_CSTD _Exp(_Pleft, _Right, _Exponent));
}
static _Ty _Infv(_Ty)
{ // return infinity
return (_CSTD _Inf._Double);
}
static bool _Isinf(_Ty _Left)
{ // test for infinity
return (_CSTD _Dtest(&_Left) == _INFCODE);
}
static bool _Isnan(_Ty _Left)
{ // test for NaN
return (_CSTD _Dtest(&_Left) == _NANCODE);
}
static _Ty _Nanv(_Ty)
{ // return NaN
return (_CSTD _Nan._Double);
}
static _Ty _Sinh(_Ty _Left, _Ty _Right)
{ // return sinh(_Left) * _Right
return (_CSTD _Sinh(_Left, _Right));
}
static _Ty atan2(_Ty _Yval, _Ty _Xval)
{ // return atan(_Yval / _Xval)
return (_CSTD atan2(_Yval, _Xval));
}
static _Ty cos(_Ty _Left)
{ // return cos(_Left)
return (_CSTD cos(_Left));
}
static _Ty exp(_Ty _Left)
{ // return exp(_Left)
return (_CSTD exp(_Left));
}
static _Ty ldexp(_Ty _Left, int _Exponent)
{ // return _Left * 2 ^ _Exponent
return (_CSTD ldexp(_Left, _Exponent));
}
static _Ty log(_Ty _Left)
{ // return log(_Left)
return (_CSTD log(_Left));
}
static _Ty pow(_Ty _Left, _Ty _Right)
{ // return _Left ^ _Right
return (_CSTD pow(_Left, _Right));
}
static _Ty sin(_Ty _Left)
{ // return sin(_Left)
return (_CSTD sin(_Left));
}
static _Ty sqrt(_Ty _Left)
{ // return sqrt(_Left)
return (_CSTD sqrt(_Left));
}
static _Ty tan(_Ty _Left)
{ // return tan(_Left)
return (_CSTD tan(_Left));
}
};
// CLASS _Ctraits<float>
template<> class _Ctraits<float>
{ // complex traits for float
public:
typedef float _Ty;
static _Ty _Cosh(_Ty _Left, _Ty _Right)
{ // return cosh(_Left) * _Right
return (_CSTD _FCosh(_Left, _Right));
}
static short _Exp(_Ty *_Pleft, _Ty _Right, short _Exponent)
{ // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
return (_CSTD _FExp(_Pleft, _Right, _Exponent));
}
static _Ty _Infv(_Ty)
{ // return infinity
return (_CSTD _FInf._Float);
}
static bool _Isinf(_Ty _Left)
{ // test for infinity
return (_CSTD _FDtest(&_Left) == _INFCODE);
}
static bool _Isnan(_Ty _Left)
{ // test for NaN
return (_CSTD _FDtest(&_Left) == _NANCODE);
}
static _Ty _Nanv(_Ty)
{ // return NaN
return (_CSTD _FNan._Float);
}
static _Ty _Sinh(_Ty _Left, _Ty _Right)
{ // return sinh(_Left) * _Right
return (_CSTD _FSinh(_Left, _Right));
}
static _Ty atan2(_Ty _Yval, _Ty _Xval)
{ // return atan(_Yval / _Xval)
return (_CSTD atan2f(_Yval, _Xval));
}
static _Ty cos(_Ty _Left)
{ // return cos(_Left)
return (_CSTD cosf(_Left));
}
static _Ty exp(_Ty _Left)
{ // return exp(_Left)
return (_CSTD expf(_Left));
}
static _Ty ldexp(_Ty _Left, int _Exponent)
{ // return _Left * 2 ^ _Exponent
return (_CSTD ldexpf(_Left, _Exponent));
}
static _Ty log(_Ty _Left)
{ // return log(_Left)
return (_CSTD logf(_Left));
}
static _Ty pow(_Ty _Left, _Ty _Right)
{ // return _Left ^ _Right
return (_CSTD powf(_Left, _Right));
}
static _Ty sin(_Ty _Left)
{ // return sin(_Left)
return (_CSTD sinf(_Left));
}
static _Ty sqrt(_Ty _Left)
{ // return sqrt(_Left)
return (_CSTD sqrtf(_Left));
}
static _Ty tan(_Ty _Left)
{ // return tan(_Left)
return (_CSTD tanf(_Left));
}
};
// TEMPLATE CLASS _Complex_value
template<class _Ty>
struct _Complex_value
{ /* templatized complex value */
enum {_Re = 0, _Im = 1};
_Ty _Val[2];
};
// TEMPLATE CLASS _Complex_base
template<class _Ty,
class _Valbase>
class _Complex_base
: public _Valbase
{ // base for all complex types
public:
typedef _Ctraits<_Ty> _Myctraits;
typedef _Complex_base<_Ty, _Valbase> _Myt;
typedef _Ty value_type;
_Complex_base(const _Ty& _Realval, const _Ty& _Imagval)
{ // construct from components of same type
this->_Val[_RE] = _Realval;
this->_Val[_IM] = _Imagval;
}
_Ty real(const _Ty& _Right)
{ // set real component
return (this->_Val[_RE] = _Right);
}
_Ty imag(const _Ty& _Right)
{ // set imaginary component
return (this->_Val[_IM] = _Right);
}
_Ty real() const
{ // return real component
return (this->_Val[_RE]);
}
_Ty imag() const
{ // return imaginary component
return (this->_Val[_IM]);
}
protected:
template<class _Other> inline
void _Add(const complex<_Other>& _Right)
{ // add other complex
this->_Val[_RE] = this->_Val[_RE] + (_Ty)_Right.real();
this->_Val[_IM] = this->_Val[_IM] + (_Ty)_Right.imag();
}
template<class _Other> inline
void _Sub(const complex<_Other>& _Right)
{ // subtract other complex
this->_Val[_RE] = this->_Val[_RE] - (_Ty)_Right.real();
this->_Val[_IM] = this->_Val[_IM] - (_Ty)_Right.imag();
}
template<class _Other> inline
void _Mul(const complex<_Other>& _Right)
{ // multiply by other complex
_Ty _Rightreal = (_Ty)_Right.real();
_Ty _Rightimag = (_Ty)_Right.imag();
_Ty _Tmp = this->_Val[_RE] * _Rightreal
- this->_Val[_IM] * _Rightimag;
this->_Val[_IM] = this->_Val[_RE] * _Rightimag
+ this->_Val[_IM] * _Rightreal;
this->_Val[_RE] = _Tmp;
}
template<class _Other> inline
void _Div(const complex<_Other>& _Right)
{ // divide by other complex
typedef _Ctraits<_Ty> _Myctraits;
_Ty _Rightreal = (_Ty)_Right.real();
_Ty _Rightimag = (_Ty)_Right.imag();
if (_Myctraits::_Isnan(_Rightreal) || _Myctraits::_Isnan(_Rightimag))
{ // set NaN result
this->_Val[_RE] = _Myctraits::_Nanv(_Rightreal);
this->_Val[_IM] = this->_Val[_RE];
}
else if ((_Rightimag < 0 ? -_Rightimag : +_Rightimag)
< (_Rightreal < 0 ? -_Rightreal : +_Rightreal))
{ // |_Right.imag()| < |_Right.real()|
_Ty _Wr = _Rightimag / _Rightreal;
_Ty _Wd = _Rightreal + _Wr * _Rightimag;
if (_Myctraits::_Isnan(_Wd) || _Wd == 0)
{ // set NaN result
this->_Val[_RE] = _Myctraits::_Nanv(_Rightreal);
this->_Val[_IM] = this->_Val[_RE];
}
else
{ // compute representable result
_Ty _Tmp = (this->_Val[_RE]
+ this->_Val[_IM] * _Wr) / _Wd;
this->_Val[_IM] = (this->_Val[_IM]
- this->_Val[_RE] * _Wr) / _Wd;
this->_Val[_RE] = _Tmp;
}
}
else if (_Rightimag == 0)
{ // set NaN result
this->_Val[_RE] = _Myctraits::_Nanv(_Rightreal);
this->_Val[_IM] = this->_Val[_RE];
}
else
{ // 0 < |_Right.real()| <= |_Right.imag()|
_Ty _Wr = _Rightreal / _Rightimag;
_Ty _Wd = _Rightimag + _Wr * _Rightreal;
if (_Myctraits::_Isnan(_Wd) || _Wd == 0)
{ // set NaN result
this->_Val[_RE] = _Myctraits::_Nanv(_Rightreal);
this->_Val[_IM] = this->_Val[_RE];
}
else
{ // compute representable result
_Ty _Tmp = (this->_Val[_RE] * _Wr + this->_Val[_IM]) / _Wd;
this->_Val[_IM] = (this->_Val[_IM] * _Wr
- this->_Val[_RE]) / _Wd;
this->_Val[_RE] = _Tmp;
}
}
}
};
// CLASS complex<float>
template<> class complex<float>
: public _Complex_base<float, _Fcomplex_value>
{ // complex with float components
public:
typedef float _Ty;
typedef complex<_Ty> _Myt;
explicit complex(
const complex<double>&); // defined below
explicit complex(
const complex<long double>&); // defined below
complex(const _Ty& _Realval = 0,
const _Ty& _Imagval = 0)
: _Complex_base<float, _Fcomplex_value>(_Realval, _Imagval)
{ // construct from float components
}
complex(const _Fcomplex_value& _Right)
: _Complex_base<float, _Fcomplex_value>(_Right._Val[_RE],
_Right._Val[_IM])
{ // construct from float complex value
}
complex(const _Dcomplex_value& _Right)
: _Complex_base<float, _Fcomplex_value>(_Right._Val[_RE],
_Right._Val[_IM])
{ // construct from double complex value
}
complex(const _Lcomplex_value& _Right)
: _Complex_base<float, _Fcomplex_value>(_Right._Val[_RE],
_Right._Val[_IM])
{ // construct from long double complex value
}
complex<_Ty>& operator=(const _Ty& _Right)
{ // assign real
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -