📄 vector
字号:
// vector stl/clr header
#ifndef _CLI_VECTOR_
#define _CLI_VECTOR_
#include <cliext/iterator>
namespace cliext {
namespace impl {
//
// TEMPLATE CLASS vector_impl
//
template<typename _Value_t,
bool _Is_ref>
ref class vector_impl
: public _STLCLR IVector<_Value_t>
{ // varying size array of elements
public:
// types
typedef vector_impl<_Value_t, _Is_ref> _Mytype_t;
typedef _STLCLR IVector<_Value_t> _Mycont_it;
typedef cli::array<_Value_t> _Myarray_t;
typedef System::Collections::Generic::IEnumerable<_Value_t> _Myenum_it;
typedef _Cont_make_value<_Value_t, _Is_ref> _Mymake_t;
typedef RandomAccessIterator<_Mytype_t>
iterator;
typedef ConstRandomAccessIterator<_Mytype_t>
const_iterator;
typedef ReverseRandomAccessIterator<_Mytype_t>
reverse_iterator;
typedef ReverseRandomAccessIterator<_Mytype_t>
const_reverse_iterator;
typedef int size_type;
typedef int difference_type;
typedef _Value_t value_type;
typedef value_type% reference;
typedef value_type% const_reference;
typedef _Mycont_it generic_container;
typedef value_type generic_value;
typedef _STLCLR Generic::ContainerRandomAccessIterator<_Value_t>
generic_iterator;
typedef _STLCLR Generic::ReverseRandomAccessIterator<_Value_t>
generic_reverse_iterator;
// constants
static const int _Maxsize = MAX_CONTAINER_SIZE;
// basics
vector_impl()
{ // construct empty vector
_Buy(0);
}
vector_impl% operator=(vector_impl% _Right)
{ // assign
if ((Object^)this != %_Right)
{ // worth doing, do it
clear();
reserve(_Right.size());
for (size_type _Idx = 0; _Idx < _Right.size(); ++_Idx)
insert_n(size(), 1, _Right.at(_Idx));
}
return (*this);
}
// constructors
vector_impl(_Mytype_t% _Right)
{ // construct by copying _Right
for (size_type _Idx = _Buy(_Right.size()); 0 <= --_Idx; )
_Myarray[_Idx] = _Mymake_t::make_value(_Right.at(_Idx));
_Mysize = _Right.size();
}
explicit vector_impl(size_type _Count)
{ // construct from _Count * value_type()
_Mysize = _Fill_n(0, _Buy(_Count), value_type());
}
vector_impl(size_type _Count, value_type _Val)
{ // construct from _Count * _Val
_Mysize = _Fill_n(0, _Buy(_Count), _Val);
}
template<typename _InIt_t>
vector_impl(_InIt_t _First, _InIt_t _Last)
{ // construct from [_First, _Last)
_Construct(_First, _Last, _Iter_category(_First));
}
template<typename _InIt_t>
void _Construct(_InIt_t _Count, _InIt_t _Val,
_Int_iterator_tag%)
{ // initialize with _Count * _Val
_Mysize = _Fill_n(0, _Buy((size_type)_Count), (value_type)_Val);
}
template<typename _InIt_t>
void _Construct(_InIt_t _First, _InIt_t _Last,
input_iterator_tag%)
{ // initialize with [_First, _Last), input iterators
_Buy(_First != _Last ? 1 : 0); // buy at least one if non-empty
for (; _First != _Last; ++_First)
insert_n(size(), 1, (value_type)*_First);
}
template<typename _InIt_t>
void _Construct(_InIt_t _First, _InIt_t _Last,
forward_iterator_tag%)
{ // initialize with [_First, _Last), forward iterators
size_type _Size = cliext::distance(_First, _Last);
_Buy(_Size);
for (size_type _Idx = 0; _Idx < _Size; ++_Idx, ++_First)
_Myarray[_Idx] = _Mymake_t::make_value(value_type(*_First));
_Mysize = _Size;
}
vector_impl(_Myenum_it^ _Right)
{ // initialize with enumeration
_Buy(0);
for each (value_type _Val in _Right)
push_back(_Val);
}
// destructor
~vector_impl()
{ // destroy the object
clear();
_Myarray = nullptr;
_Mysize = 0;
++_Mygen;
}
// accessors
unsigned long get_generation()
{ // get underlying container generation
return (_Mygen);
}
size_type get_bias(iterator _Where)
{ // get offset from valid iterator
if (_Where.container() != this)
throw gcnew System::ArgumentException();
return (_Where.get_bias());
}
bool valid_bias(size_type _Bias)
{ // test if _Bias is currently a valid bias
return (0 <= _Bias && _Bias <= size());
}
reference at(size_type _Pos)
{ // subscript mutable sequence with checking
if (_Pos < 0 || size() <= _Pos)
throw gcnew System::ArgumentOutOfRangeException();
return (_Myarray[_Pos]);
}
reference at_bias(size_type _Bias)
{ // subscript mutable sequence with checking, biased
return (at(_Bias));
}
property value_type default[size_type]
{ // get or set subscripted element
virtual value_type get(size_type _Pos)
{ // get _Pos element
return (at(_Pos));
}
virtual void set(size_type _Pos, value_type _Val)
{ // set _Pos element
at(_Pos) = _Val;
}
};
property value_type front_item
{ // get or set first element
virtual value_type get()
{ // get first element
return (front());
}
virtual void set(value_type _Val)
{ // set first element
front() = _Val;
}
};
property value_type back_item
{ // get or set last element
virtual value_type get()
{ // get last element
return (back());
}
virtual void set(value_type _Val)
{ // set last element
back() = _Val;
}
};
reference front()
{ // get first element of mutable sequence
if (empty())
throw gcnew System::NullReferenceException();
return (at(0));
}
reference back()
{ // get last element of mutable sequence
if (empty())
throw gcnew System::NullReferenceException();
return (at(size() - 1));
}
// converters
_Myarray_t^ to_array()
{ // convert to array
_Myarray_t^ _Ans = gcnew _Myarray_t(size());
for (int _Idx = size(); 0 <= --_Idx; )
_Ans[_Idx] = _Mymake_t::make_value(_Myarray[_Idx]);
return (_Ans);
}
// iterator generators
iterator make_iterator(size_type _Bias)
{ // return iterator for offset
return (iterator(this, _Bias));
}
iterator begin()
{ // return iterator for beginning of mutable sequence
return (make_iterator(0));
}
iterator end()
{ // return iterator for end of mutable sequence
return (make_iterator(size()));
}
reverse_iterator rbegin()
{ // return reverse iterator for beginning of mutable sequence
return (reverse_iterator(end()));
}
reverse_iterator rend()
{ // return reverse iterator for end of mutable sequence
return (reverse_iterator(begin()));
}
// size controllers
void reserve(size_type _Capacity)
{ // determine new minimum length of allocated storage
if (_Capacity < 0)
throw gcnew System::ArgumentOutOfRangeException();
if (capacity() < _Capacity)
{ // not enough room, reallocate
_Myarray_t^ _Oldarray = _Myarray;
_Myarray = gcnew _Myarray_t(_Capacity);
for (size_type _Idx = size(); 0 <= --_Idx; )
_Myarray[_Idx] = _Oldarray[_Idx];
}
}
size_type capacity()
{ // return current length of allocated storage
return (_Myarray == nullptr ? 0 : _Myarray->Length);
}
virtual void resize(size_type _Newsize)
{ // determine new length, padding with value_type elements
resize(_Newsize, value_type());
}
void resize(size_type _Newsize, value_type _Val)
{ // determine new length, padding with _Val elements
if (_Newsize < 0)
throw gcnew System::ArgumentOutOfRangeException();
if (size() < _Newsize)
insert_n(size(), _Newsize - size(), _Val);
else if (_Newsize < size())
erase_n(_Newsize, size());
}
size_type size()
{ // return length of sequence
return (_Mysize);
}
bool empty()
{ // test if sequence is empty
return (size() == 0);
}
// mutators
// void push_front(value_type _Val);
// void pop_front();
void push_back(value_type _Val)
{ // insert element at end
insert_n(size(), 1, _Val);
}
void pop_back()
{ // erase element at end
erase_n(size() - 1, size()); // discard from end
}
void assign(size_type _Count, value_type _Val)
{ // assign _Count * _Val
clear();
insert_n(0, _Count, _Val);
}
void assign(_STLCLR Generic::IInputIterator<_Value_t>^ _First,
_STLCLR Generic::IInputIterator<_Value_t>^ _Last)
{ // initialize with [_First, _Last), input iterators
if (_Iter_container(_First) != this)
clear();
size_type _Oldsize = size();
for (; !_First->equal_to(_Last); _First->next())
insert_n(size(),
1, (value_type)_First->get_cref()); // append new stuff
erase_n(0, _Oldsize); // erase any leftover old stuff
}
void assign(_Myenum_it^ _Right)
{ // initialize with enumeration
size_type _Oldsize = size();
for each (value_type _Val in _Right)
insert_n(size(), 1, _Val); // append new stuff
erase_n(0, _Oldsize); // erase any leftover old stuff
}
void assign(System::Collections::IEnumerable^ _Right)
{ // initialize with enumeration
size_type _Oldsize = size();
for each (value_type _Val in _Right)
insert_n(size(), 1, _Val); // append new stuff
erase_n(0, _Oldsize); // erase any leftover old stuff
}
iterator insert(iterator _Where, value_type _Val)
{ // insert _Val at _Where
return (make_iterator(
insert_n(get_bias(_Where), 1, _Val)));
}
void insert(iterator _Where,
size_type _Count, value_type _Val)
{ // insert _Count * _Val at _Where
insert_n(get_bias(_Where), _Count, _Val);
}
void insert(iterator _Where_iter,
_STLCLR Generic::IInputIterator<_Value_t>^ _First,
_STLCLR Generic::IInputIterator<_Value_t>^ _Last)
{ // insert [_First, _Last) at _Where, input iterators
size_type _Where = get_bias(_Where_iter);
size_type _Oldsize = size();
if (!valid_bias(_Where))
throw gcnew System::InvalidOperationException();
for (; !_First->equal_to(_Last); _First->next())
insert_n(size(), 1, (value_type)_First->get_cref());
reverse_n(_Where, _Oldsize);
reverse_n(_Oldsize, size());
reverse_n(_Where, size());
}
void insert(iterator _Where_iter,
_Myenum_it^ _Right)
{ // insert enumeration at _Where, possibly from this container
size_type _Where = get_bias(_Where_iter);
size_type _Oldsize = size();
if (!valid_bias(_Where))
throw gcnew System::InvalidOperationException();
for each (value_type _Val in _Right)
insert_n(size(), 1, _Val);
reverse_n(_Where, _Oldsize);
reverse_n(_Oldsize, size());
reverse_n(_Where, size());
}
void insert(iterator _Where_iter,
System::Collections::IEnumerable^ _Right)
{ // insert enumeration at _Where, possibly from this container
size_type _Where = get_bias(_Where_iter);
size_type _Oldsize = size();
if (!valid_bias(_Where))
throw gcnew System::InvalidOperationException();
for each (value_type _Val in _Right)
insert_n(size(), 1, _Val);
reverse_n(_Where, _Oldsize);
reverse_n(_Oldsize, size());
reverse_n(_Where, size());
}
template<typename _InIt_t>
void _Insert_self(size_type _Where, _InIt_t _First, _InIt_t _Last)
{ // insert [_First, _Last] at _Where, from this container
size_type _Oldsize = size();
if (!valid_bias(_Where))
throw gcnew System::InvalidOperationException();
for (; _First != _Last; ++_First)
insert_n(size(), 1, (value_type)*_First);
reverse_n(_Where, _Oldsize);
reverse_n(_Oldsize, size());
reverse_n(_Where, size());
}
size_type insert_n(size_type _Where,
size_type _Count, value_type _Val)
{ // insert _Count * _Val at _Where
if (_Count < 0)
throw gcnew System::ArgumentOutOfRangeException();
if (_Count == 0)
return (_Where);
else
{ // insert finite sequence
_Insert_space(_Where, _Count);
_Fill_n(_Where, _Count, _Val);
++_Mygen;
return (_Where + _Count - 1);
}
}
iterator erase(iterator _Where)
{ // erase element at _Where
size_type _Bias = get_bias(_Where);
return (make_iterator(erase_n(_Bias, _Bias + 1)));
}
iterator erase(iterator _First, iterator _Last)
{ // erase [_First, _Last)
return (make_iterator(
erase_n(get_bias(_First), get_bias(_Last))));
}
size_type erase_n(size_type _First, size_type _Last)
{ // erase [_First, _Last)
if (_First < 0 || _Last < _First || size() < _Last)
throw gcnew System::InvalidOperationException();
if (_First != _Last)
{ // worth doing, copy down over hole
for (size_type _Next = _First; _Next != _Last; ++_Next)
_Mymake_t::unmake_value(at(_Next));
_Mysize = _Copy(_Myarray, _Last, size(), _First);
++_Mygen;
}
return (_First);
}
void reverse_n(size_type _First, size_type _Last)
{ // reverse a subrange
bool _Changed = false;
for (; _First != _Last && _First != --_Last; ++_First)
{ // swap distinct _First and _Last
value_type _Temp = _Myarray[_First];
_Myarray[_First] = _Myarray[_Last];
_Myarray[_Last] = _Temp;
_Changed = true;
}
if (_Changed)
++_Mygen;
}
void clear()
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -