📄 gc-mem.c
字号:
/* gc-mem.c * The heap manager. * * Copyright (c) 1996, 1997 * Transvirtual Technologies, Inc. All rights reserved. * * See the file "license.terms" for information on usage and redistribution * of this file. */#include "debug.h"/* undefine this to revert to old tile scheme */#define PREDEFINED_NUMBER_OF_TILES#include "config.h"#include "config-std.h"#include "config-mem.h"#include "gtypes.h"#include "baseClasses.h"#include "support.h"#include "stats.h"#include "locks.h"#include "thread.h"#include "gc.h"#include "gc-mem.h"#include "jni.h"#ifdef HAVE_UNISTD_H#include <unistd.h>#endif#if defined(HAVE_MPROTECT) && defined(DEBUG)#include <sys/mman.h>#endifextern iLock* gc_lock;#if defined(KAFFE_STATS)static counter gcpages;#endifstatic gc_block* gc_small_block(size_t);static gc_block* gc_large_block(size_t);static gc_block* gc_primitive_alloc(size_t);void gc_primitive_free(gc_block*);static void* gc_system_alloc(size_t);uintp gc_heap_base;uintp gc_block_base;uintp gc_heap_range;typedef struct { gc_block* list; uint16 sz;} gc_freelist;static gc_freelist freelist[NR_FREELISTS+1]#ifdef PREDEFINED_NUMBER_OF_TILES = {#define S(sz) { 0, sz } S(16), S(24), S(32), S(40), S(48), S(56), S(64), S(80), S(96), S(112), S(128), S(160), S(192), S(224), S(240), S(496), S(1000), S(2016), S(4040), { (gc_block *)-1, 0 }}#endif /* PREDEFINED_NUMBER_OF_TILES */;static struct { uint16 list;} sztable[MAX_SMALL_OBJECT_SIZE+1];static int max_freelist;static gc_block* gc_prim_freelist;static size_t max_small_object_size;size_t gc_heap_total; /* current size of the heap */size_t gc_heap_allocation_size; /* amount of memory by which to grow heap */size_t gc_heap_initial_size; /* amount of memory to initially allocate */size_t gc_heap_limit; /* maximum size to which heap should grow */#ifndef gc_pgsizesize_t gc_pgsize;int gc_pgbits;#endif#ifdef DEBUGint gc_system_alloc_cnt;#endifextern struct Hjava_lang_Thread* garbageman;#ifdef DEBUG/* * analyze the slack incurred by small objects */static int totalslack;static int totalsmallobjs;static void printslack(void){ dprintf( "allocated %d small objects, total slack %d, slack/per " "object %8.2f\n", totalsmallobjs, totalslack, totalslack/(double)totalsmallobjs);}/* * check whether the heap is still in a consistent state */static voidgc_heap_check(void){ int i; for (i = 0; i < NR_FREELISTS; i++) { gc_block* blk = freelist[i].list; if (blk == 0 || blk == (gc_block*)-1) { continue; } else { gc_freeobj* mem = blk->free; assert(blk->inuse); assert(blk->avail < blk->nr); assert(blk->funcs == (uint8*)GCBLOCK2BASE(blk)); assert(blk->state == (uint8*)(blk->funcs + blk->nr)); assert(blk->data == (uint8*)ROUNDUPALIGN(blk->state + blk->nr)); while (mem) { ASSERT_ONBLOCK(mem, blk); mem = mem->next; } } }}#endif /* DEBUG *//* * Initialise allocator. */staticvoidgc_heap_initialise(void){#ifndef gc_pgsize gc_pgsize = getpagesize(); for (gc_pgbits = 0; (1 << gc_pgbits) != gc_pgsize && gc_pgbits < 64; gc_pgbits++) ; assert(gc_pgbits < 64);#endif gc_heap_allocation_size = Kaffe_JavaVMArgs[0].allocHeapSize; gc_heap_initial_size = Kaffe_JavaVMArgs[0].minHeapSize; gc_heap_limit = Kaffe_JavaVMArgs[0].maxHeapSize; /* * Perform some sanity checks. */ if (gc_heap_initial_size > gc_heap_limit) { dprintf( "Initial heap size (%dK) > Maximum heap size (%dK)\n", (int) (gc_heap_initial_size/1024), (int)(gc_heap_limit/1024)); EXIT(-1); }#ifndef PREDEFINED_NUMBER_OF_TILES { int i; int l; int b; int t; /* old scheme, where number of tiles was approximated by a series * of powers of two */#define OBJSIZE(NR) \ ((gc_pgsize-GCBLOCK_OVH-ROUNDUPALIGN(1)-(NR*(2+sizeof(void*))))/NR) /* For a given number of tiles in a block, work out the size of * the allocatable units which'll fit in them and build a translation * table for the sizes. */ i = 1; max_small_object_size = ROUNDDOWNALIGN(OBJSIZE(i)); l = max_small_object_size; for (;;) { b = ROUNDDOWNALIGN(OBJSIZE(i)); if (b >= MIN_OBJECT_SIZE) { for (t = l; t > b; t--) { sztable[t].list = l; } l = t; i <<= 1; } else { for (t = l; t > MIN_OBJECT_SIZE; t--) { sztable[t].list = l; } for (t = 0; t <= MIN_OBJECT_SIZE; t++) { sztable[t].list = MIN_OBJECT_SIZE; } break; } } /* Translate table into list numbers */ i = -1; b = -1; for (l = 0; l <= max_small_object_size; l++) { if (sztable[l].list != b) { b = sztable[l].list; i++; freelist[i].sz = b; } sztable[l].list = i; } max_freelist = i; }#else /* PREDEFINED_NUMBER_OF_TILES */ { /* * Use the preinitialized freelist table to initialize * the sztable. */ int sz = 0; uint16 flidx = 0; while (freelist[flidx].list == 0) { for (; sz <= freelist[flidx].sz; sz++) sztable[sz].list = flidx; flidx++; } max_small_object_size = sz - 1; max_freelist = flidx; }#endifDBG(SLACKANAL, atexit(printslack); )#undef OBJSIZE /* Round 'gc_heap_allocation_size' up to pagesize */ gc_heap_allocation_size = ROUNDUPPAGESIZE(gc_heap_allocation_size); /* Round 'gc_heap_initial_size' up to pagesize */ gc_heap_initial_size = ROUNDUPPAGESIZE(gc_heap_initial_size); /* allocate heap of initial size from system */ gc_system_alloc(gc_heap_initial_size);}/* * gc_heap_malloc * Allocate a piece of memory. */void*gc_heap_malloc(size_t sz){ static int gc_heap_init = 0; size_t lnr; gc_freeobj* mem; gc_block** mptr; gc_block* blk; size_t nsz; int times; int iLockRoot; /* Initialise GC heap first time in - we must assume single threaded * operation here so we can do the lock initialising. */ if (gc_heap_init == 0) { gc_heap_initialise(); gc_heap_init = 1; } lockStaticMutex(&gc_lock); times = 0;DBG(SLACKANAL, if (GC_SMALL_OBJECT(sz)) { totalslack += (freelist[sztable[sz].list].sz - sz); totalsmallobjs++; } ) rerun:; times++;DBG(GCDIAG, gc_heap_check(); ) if (GC_SMALL_OBJECT(sz)) { /* Translate size to object free list */ lnr = sztable[sz].list; nsz = freelist[lnr].sz; /* No available objects? Allocate some more */ mptr = &freelist[lnr].list; if (*mptr != 0) { blk = *mptr; assert(blk->free != 0);DBG(GCALLOC, dprintf("gc_heap_malloc: freelist %d at %p free %p\n", sz, *mptr, blk->free);) } else { blk = gc_small_block(nsz); if (blk == 0) { nsz = gc_pgsize; goto nospace; } blk->next = *mptr; *mptr = blk;DBG(GCALLOC, dprintf("gc_heap_malloc: small block %d at %p free %p\n", sz, *mptr, blk->free);) } /* Unlink free one and return it */ mem = blk->free; DBG(GCDIAG, assert(blk->magic == GC_MAGIC); ASSERT_ONBLOCK(mem, blk); if (mem->next) ASSERT_ONBLOCK(mem->next, blk)); blk->free = mem->next; GC_SET_STATE(blk, GCMEM2IDX(blk, mem), GC_STATE_NORMAL); /* Once we use all the sub-blocks up, remove the whole block * from the freelist. */ assert(blk->nr >= blk->avail); assert(blk->avail > 0); blk->avail--; if (blk->avail == 0) { *mptr = blk->next; } } else { nsz = sz; blk = gc_large_block(nsz); if (blk == 0) { nsz = nsz + GCBLOCK_OVH + sizeof(gcFuncs*) + ROUNDUPALIGN(1); nsz = ROUNDUPPAGESIZE(nsz); goto nospace; } mem = GCBLOCK2FREE(blk, 0); GC_SET_STATE(blk, 0, GC_STATE_NORMAL);DBG(GCALLOC, dprintf("gc_heap_malloc: large block %d at %p\n", sz, mem); ) blk->avail--; assert(blk->avail == 0); } /* Clear memory */ memset(mem, 0, nsz); assert(GC_OBJECT_SIZE(mem) >= sz); unlockStaticMutex(&gc_lock); return (mem); /* --------------------------------------------------------------- */ nospace:; /* Failed to find space in any freelists. Must try to get the * memory from somewhere. */ switch (times) { case 1: /* Try invoking GC if it is available */ if (garbageman != 0) { /* The other caller of invokeGC, Runtime.gc() can't * give up this lock on its own, since it does not * hold this lock. */ unlockStaticMutex(&gc_lock); adviseGC(); lockStaticMutex(&gc_lock); } break; case 2: /* Get from the system */ if (nsz < gc_heap_allocation_size) { nsz = gc_heap_allocation_size; } gc_system_alloc(nsz); break; default: if (DBGEXPR(CATCHOUTOFMEM, true, false)) { /* * If we ran out of memory, a OutOfMemoryException is * thrown. If we fail to allocate memory for it, all * is lost. */ static int ranout; assert (ranout++ == 0 || !!!"Ran out of memory!"); } /* Guess we've really run out */ unlockStaticMutex(&gc_lock); return (0); } /* Try again */ goto rerun;}/* * Free a piece of memory. */voidgc_heap_free(void* mem){ gc_block* info; gc_freeobj* obj; int lnr; int msz; int idx; info = GCMEM2BLOCK(mem); idx = GCMEM2IDX(info, mem); DBG(GCDIAG, gc_heap_check(); assert(info->magic == GC_MAGIC); assert(GC_GET_COLOUR(info, idx) != GC_COLOUR_FREE)); GC_SET_COLOUR(info, idx, GC_COLOUR_FREE);DBG(GCFREE, dprintf("gc_heap_free: memory %p size %d\n", mem, info->size); ) if (GC_SMALL_OBJECT(info->size)) { lnr = sztable[info->size].list; /* If this block contains no free sub-blocks yet, attach * it to freelist. */ if (info->avail == 0) { info->next = freelist[lnr].list; freelist[lnr].list = info; } info->avail++; DBG(GCDIAG, /* write pattern in memory to see when live objects were * freed - Note that (f4f4f4f4 == -185273100) */ memset(mem, 0xf4, info->size)); obj = GCMEM2FREE(mem); obj->next = info->free; info->free = obj; ASSERT_ONBLOCK(obj, info); /* If we free all sub-blocks, free the block */ assert(info->avail <= info->nr); if (info->avail == info->nr) { gc_block** finfo = &freelist[lnr].list; for (;;) { if (*finfo == info) { (*finfo) = info->next; info->size = gc_pgsize; gc_primitive_free(info); break; } finfo = &(*finfo)->next; assert(*finfo != 0); } } } else { /* Calculate true size of block */ msz = info->size + GCBLOCK_OVH + ROUNDUPALIGN(1); msz = ROUNDUPPAGESIZE(msz); info->size = msz; gc_primitive_free(info); }DBG(GCDIAG, gc_heap_check(); )}/* * Allocate a new block of GC'ed memory. The block will contain 'nr' objects
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -