📄 lequations.cpp
字号:
// 4. CMatrix& mtxResultImag - CMatrix引用对象,返回方程组解矩阵的虚部矩阵
//
// 返回值:BOOL 型,方程组求解是否成功
//////////////////////////////////////////////////////////////////////
BOOL CLEquations::GetRootsetGaussJordan(const CMatrix& mtxCoefImag, const CMatrix& mtxConstImag, CMatrix& mtxResult, CMatrix& mtxResultImag)
{
int *pnJs,l,k,i,j,nIs,u,v;
double p,q,s,d;
// 方程组的属性,将常数矩阵赋给解矩阵
mtxResult = m_mtxConst;
mtxResultImag = mtxConstImag;
double *pDataCoef = m_mtxCoef.GetData();
double *pDataConst = mtxResult.GetData();
double *pDataCoefImag = mtxCoefImag.GetData();
double *pDataConstImag = mtxResultImag.GetData();
int n = GetNumUnknowns();
int m = m_mtxConst.GetNumColumns();
// 临时缓冲区,存放变换的列数
pnJs = new int[n];
// 消元
for (k=0;k<=n-1;k++)
{
d=0.0;
for (i=k;i<=n-1;i++)
{
for (j=k;j<=n-1;j++)
{
u=i*n+j;
p=pDataCoef[u]*pDataCoef[u]+pDataCoefImag[u]*pDataCoefImag[u];
if (p>d)
{
d=p;
pnJs[k]=j;
nIs=i;
}
}
}
// 求解失败
if (d == 0.0)
{
delete[] pnJs;
return FALSE;
}
if (nIs!=k)
{
for (j=k;j<=n-1;j++)
{
u=k*n+j;
v=nIs*n+j;
p=pDataCoef[u];
pDataCoef[u]=pDataCoef[v];
pDataCoef[v]=p;
p=pDataCoefImag[u];
pDataCoefImag[u]=pDataCoefImag[v];
pDataCoefImag[v]=p;
}
for (j=0;j<=m-1;j++)
{
u=k*m+j;
v=nIs*m+j;
p=pDataConst[u];
pDataConst[u]=pDataConst[v];
pDataConst[v]=p;
p=pDataConstImag[u];
pDataConstImag[u]=pDataConstImag[v];
pDataConstImag[v]=p;
}
}
if (pnJs[k]!=k)
{
for (i=0;i<=n-1;i++)
{
u=i*n+k;
v=i*n+pnJs[k];
p=pDataCoef[u];
pDataCoef[u]=pDataCoef[v];
pDataCoef[v]=p;
p=pDataCoefImag[u];
pDataCoefImag[u]=pDataCoefImag[v];
pDataCoefImag[v]=p;
}
}
v=k*n+k;
for (j=k+1;j<=n-1;j++)
{
u=k*n+j;
p=pDataCoef[u]*pDataCoef[v];
q=-pDataCoefImag[u]*pDataCoefImag[v];
s=(pDataCoef[v]-pDataCoefImag[v])*(pDataCoef[u]+pDataCoefImag[u]);
pDataCoef[u]=(p-q)/d;
pDataCoefImag[u]=(s-p-q)/d;
}
for (j=0;j<=m-1;j++)
{
u=k*m+j;
p=pDataConst[u]*pDataCoef[v];
q=-pDataConstImag[u]*pDataCoefImag[v];
s=(pDataCoef[v]-pDataCoefImag[v])*(pDataConst[u]+pDataConstImag[u]);
pDataConst[u]=(p-q)/d;
pDataConstImag[u]=(s-p-q)/d;
}
for (i=0;i<=n-1;i++)
{
if (i!=k)
{
u=i*n+k;
for (j=k+1;j<=n-1;j++)
{
v=k*n+j;
l=i*n+j;
p=pDataCoef[u]*pDataCoef[v];
q=pDataCoefImag[u]*pDataCoefImag[v];
s=(pDataCoef[u]+pDataCoefImag[u])*(pDataCoef[v]+pDataCoefImag[v]);
pDataCoef[l]=pDataCoef[l]-p+q;
pDataCoefImag[l]=pDataCoefImag[l]-s+p+q;
}
for (j=0;j<=m-1;j++)
{
l=i*m+j;
v=k*m+j;
p=pDataCoef[u]*pDataConst[v]; q=pDataCoefImag[u]*pDataConstImag[v];
s=(pDataCoef[u]+pDataCoefImag[u])*(pDataConst[v]+pDataConstImag[v]);
pDataConst[l]=pDataConst[l]-p+q;
pDataConstImag[l]=pDataConstImag[l]-s+p+q;
}
}
}
}
// 求解调整
for (k=n-1;k>=0;k--)
{
if (pnJs[k]!=k)
{
for (j=0;j<=m-1;j++)
{
u=k*m+j;
v=pnJs[k]*m+j;
p=pDataConst[u];
pDataConst[u]=pDataConst[v];
pDataConst[v]=p;
p=pDataConstImag[u];
pDataConstImag[u]=pDataConstImag[v];
pDataConstImag[v]=p;
}
}
}
// 清理内存
delete[] pnJs;
return TRUE;
}
//////////////////////////////////////////////////////////////////////
// 求解三对角线方程组的追赶法
//
// 参数:
// 1. CMatrix& mtxResult - CMatrix引用对象,返回方程组解矩阵
//
// 返回值:BOOL 型,方程组求解是否成功
//////////////////////////////////////////////////////////////////////
BOOL CLEquations::GetRootsetTriDiagonal(CMatrix& mtxResult)
{
int k,j;
double s;
// 将常数矩阵赋给解矩阵
mtxResult = m_mtxConst;
double *pDataConst = mtxResult.GetData();
int n = GetNumUnknowns();
ASSERT(m_mtxCoef.GetNumRows() == n);
// 为系数矩阵对角线数组分配内存
double* pDiagData = new double[3*n-2];
// 构造系数矩阵对角线元素数组
k = j = 0;
if (k == 0)
{
pDiagData[j++] = m_mtxCoef.GetElement(k, k);
pDiagData[j++] = m_mtxCoef.GetElement(k, k+1);
}
for (k=1; k<n-1; ++k)
{
pDiagData[j++] = m_mtxCoef.GetElement(k, k-1);
pDiagData[j++] = m_mtxCoef.GetElement(k, k);
pDiagData[j++] = m_mtxCoef.GetElement(k, k+1);
}
if (k == n-1)
{
pDiagData[j++] = m_mtxCoef.GetElement(k, k-1);
pDiagData[j++] = m_mtxCoef.GetElement(k, k);
}
// 求解
for (k=0;k<=n-2;k++)
{
j=3*k;
s=pDiagData[j];
// 求解失败
if (fabs(s)+1.0==1.0)
{
delete[] pDiagData;
return FALSE;
}
pDiagData[j+1]=pDiagData[j+1]/s;
pDataConst[k]=pDataConst[k]/s;
pDiagData[j+3]=pDiagData[j+3]-pDiagData[j+2]*pDiagData[j+1];
pDataConst[k+1]=pDataConst[k+1]-pDiagData[j+2]*pDataConst[k];
}
s=pDiagData[3*n-3];
if (s == 0.0)
{
delete[] pDiagData;
return FALSE;
}
// 调整
pDataConst[n-1]=pDataConst[n-1]/s;
for (k=n-2;k>=0;k--)
pDataConst[k]=pDataConst[k]-pDiagData[3*k+1]*pDataConst[k+1];
// 释放内存
delete[] pDiagData;
return TRUE;
}
//////////////////////////////////////////////////////////////////////
// 一般带型方程组的求解
//
// 参数:
// 1. int nBandWidth - 带宽
// 2. CMatrix& mtxResult - CMatrix引用对象,返回方程组解矩阵
//
// 返回值:BOOL 型,方程组求解是否成功
//////////////////////////////////////////////////////////////////////
BOOL CLEquations::GetRootsetBand(int nBandWidth, CMatrix& mtxResult)
{
int ls,k,i,j,is,u,v;
double p,t;
// 带宽必须为奇数
if ((nBandWidth-1)%2 != 0)
return FALSE;
// 将常数矩阵赋给解矩阵
mtxResult = m_mtxConst;
double *pDataConst = mtxResult.GetData();
// 方程组属性
int m = m_mtxConst.GetNumColumns();
int n = GetNumUnknowns();
ASSERT(m_mtxCoef.GetNumRows() == n);
// 带宽数组:带型矩阵的有效数据
double* pBandData = new double[nBandWidth*n];
// 半带宽
ls = (nBandWidth-1)/2;
// 构造带宽数组
for (i=0; i<n; ++i)
{
j = 0;
for (k=max(0, i-ls); k<max(0, i-ls)+nBandWidth; ++k)
{
if (k < n)
pBandData[i*nBandWidth+j++] = m_mtxCoef.GetElement(i, k);
else
pBandData[i*nBandWidth+j++] = 0;
}
}
// 求解
for (k=0;k<=n-2;k++)
{
p=0.0;
for (i=k;i<=ls;i++)
{
t=fabs(pBandData[i*nBandWidth]);
if (t>p)
{
p=t;
is=i;
}
}
if (p == 0.0)
{
delete[] pBandData;
return FALSE;
}
for (j=0;j<=m-1;j++)
{
u=k*m+j;
v=is*m+j;
t=pDataConst[u];
pDataConst[u]=pDataConst[v];
pDataConst[v]=t;
}
for (j=0;j<=nBandWidth-1;j++)
{
u=k*nBandWidth+j;
v=is*nBandWidth+j;
t=pBandData[u];
pBandData[u]=pBandData[v];
pBandData[v]=t;
}
for (j=0;j<=m-1;j++)
{
u=k*m+j;
pDataConst[u]=pDataConst[u]/pBandData[k*nBandWidth];
}
for (j=1;j<=nBandWidth-1;j++)
{
u=k*nBandWidth+j;
pBandData[u]=pBandData[u]/pBandData[k*nBandWidth];
}
for (i=k+1;i<=ls;i++)
{
t=pBandData[i*nBandWidth];
for (j=0;j<=m-1;j++)
{
u=i*m+j;
v=k*m+j;
pDataConst[u]=pDataConst[u]-t*pDataConst[v];
}
for (j=1;j<=nBandWidth-1;j++)
{
u=i*nBandWidth+j;
v=k*nBandWidth+j;
pBandData[u-1]=pBandData[u]-t*pBandData[v];
}
u=i*nBandWidth+nBandWidth-1; pBandData[u]=0.0;
}
if (ls!=(n-1))
ls=ls+1;
}
p=pBandData[(n-1)*nBandWidth];
if (p == 0.0)
{
delete[] pBandData;
return FALSE;
}
for (j=0;j<=m-1;j++)
{
u=(n-1)*m+j;
pDataConst[u]=pDataConst[u]/p;
}
ls=1;
for (i=n-2;i>=0;i--)
{
for (k=0;k<=m-1;k++)
{
u=i*m+k;
for (j=1;j<=ls;j++)
{
v=i*nBandWidth+j;
is=(i+j)*m+k;
pDataConst[u]=pDataConst[u]-pBandData[v]*pDataConst[is];
}
}
if (ls!=(nBandWidth-1))
ls=ls+1;
}
// 释放内存
delete[] pBandData;
return TRUE;
}
//////////////////////////////////////////////////////////////////////
// 求解对称方程组的分解法
//
// 参数:
// 1. CMatrix& mtxResult - CMatrix引用对象,返回方程组解矩阵
//
// 返回值:BOOL 型,方程组求解是否成功
//////////////////////////////////////////////////////////////////////
BOOL CLEquations::GetRootsetDjn(CMatrix& mtxResult)
{
int i,j,l,k,u,v,w,k1,k2,k3;
double p;
// 方程组属性,将常数矩阵赋给解矩阵
CMatrix mtxCoef = m_mtxCoef;
mtxResult = m_mtxConst;
int n = mtxCoef.GetNumColumns();
int m = mtxResult.GetNumColumns();
double* pDataCoef = mtxCoef.GetData();
double* pDataConst = mtxResult.GetData();
// 非对称系数矩阵,不能用本方法求解
if (pDataCoef[0] == 0.0)
return FALSE;
for (i=1; i<=n-1; i++)
{
u=i*n;
pDataCoef[u]=pDataCoef[u]/pDataCoef[0];
}
for (i=1; i<=n-2; i++)
{
u=i*n+i;
for (j=1; j<=i; j++)
{
v=i*n+j-1;
l=(j-1)*n+j-1;
pDataCoef[u]=pDataCoef[u]-pDataCoef[v]*pDataCoef[v]*pDataCoef[l];
}
p=pDataCoef[u];
if (p == 0.0)
return FALSE;
for (k=i+1; k<=n-1; k++)
{
u=k*n+i;
for (j=1; j<=i; j++)
{
v=k*n+j-1;
l=i*n+j-1;
w=(j-1)*n+j-1;
pDataCoef[u]=pDataCoef[u]-pDataCoef[v]*pDataCoef[l]*pDataCoef[w];
}
pDataCoef[u]=pDataCoef[u]/p;
}
}
u=n*n-1;
for (j=1; j<=n-1; j++)
{
v=(n-1)*n+j-1;
w=(j-1)*n+j-1;
pDataCoef[u]=pDataCoef[u]-pDataCoef[v]*pDataCoef[v]*pDataCoef[w];
}
p=pDataCoef[u];
if (p == 0.0)
return FALSE;
for (j=0; j<=m-1; j++)
{
for (i=1; i<=n-1; i++)
{
u=i*m+j;
for (k=1; k<=i; k++)
{
v=i*n+k-1;
w=(k-1)*m+j;
pDataConst[u]=pDataConst[u]-pDataCoef[v]*pDataConst[w];
}
}
}
for (i=1; i<=n-1; i++)
{
u=(i-1)*n+i-1;
for (j=i; j<=n-1; j++)
{
v=(i-1)*n+j;
w=j*n+i-1;
pDataCoef[v]=pDataCoef[u]*pDataCoef[w];
}
}
for (j=0; j<=m-1; j++)
{
u=(n-1)*m+j;
pDataConst[u]=pDataConst[u]/p;
for (k=1; k<=n-1; k++)
{
k1=n-k;
k3=k1-1;
u=k3*m+j;
for (k2=k1; k2<=n-1; k2++)
{
v=k3*n+k2;
w=k2*m+j;
pDataConst[u]=pDataConst[u]-pDataCoef[v]*pDataConst[w];
}
pDataConst[u]=pDataConst[u]/pDataCoef[k3*n+k3];
}
}
return TRUE;
}
//////////////////////////////////////////////////////////////////////
// 求解对称正定方程组的平方根法
//
// 参数:
// 1. CMatrix& mtxResult - CMatrix引用对象,返回方程组解矩阵
//
// 返回值:BOOL 型,方程组求解是否成功
//////////////////////////////////////////////////////////////////////
BOOL CLEquations::GetRootsetCholesky(CMatrix& mtxResult)
{
int i,j,k,u,v;
// 方程组属性,将常数矩阵赋给解矩阵
CMatrix mtxCoef = m_mtxCoef;
mtxResult = m_mtxConst;
int n = mtxCoef.GetNumColumns();
int m = mtxResult.GetNumColumns();
double* pDataCoef = mtxCoef.GetData();
double* pDataConst = mtxResult.GetData();
// 非对称正定系数矩阵,不能用本方法求解
if (pDataCoef[0] <= 0.0)
return FALSE;
pDataCoef[0]=sqrt(pDataCoef[0]);
for (j=1; j<=n-1; j++)
pDataCoef[j]=pDataCoef[j]/pDataCoef[0];
for (i=1; i<=n-1; i++)
{
u=i*n+i;
for (j=1; j<=i; j++)
{
v=(j-1)*n+i;
pDataCoef[u]=pDataCoef[u]-pDataCoef[v]*pDataCoef[v];
}
if (pDataCoef[u] <= 0.0)
return FALSE;
pDataCoef[u]=sqrt(pDataCoef[u]);
if (i!=(n-1))
{
for (j=i+1; j<=n-1; j++)
{
v=i*n+j;
for (k=1; k<=i; k++)
pDataCoef[v]=pDataCoef[v]-pDataCoef[(k-1)*n+i]*pDataCoef[(k-1)*n+j];
pDataCoef[v]=pDataCoef[v]/pDataCoef[u];
}
}
}
for (j=0; j<=m-1; j++)
{
pDataConst[j]=pDataConst[j]/pDataCoef[0];
for (i=1; i<=n-1; i++)
{
u=i*n+i;
v=i*m+j;
for (k=1; k<=i; k++)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -