⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgain.c

📁 语音CELP压缩解压源代码(C语音)
💻 C
字号:
/**************************************************************************** ROUTINE*		pgain** FUNCTION*		Find pitch gain and error** SYNOPSIS*               function pgain(ex, l, first, m, len, match)**   formal**                       data    I/O*       name            type    type    function*       -------------------------------------------------------------------*       ex[l]		float	i	excitation vector*       l		int	i	size of ex*       first		int	i	first call flag*	m		int	i	pitch lag*	len		int	i	length to truncate impulse response*       match		float	o	negative partial squared error*       pgain		float	fun	optimal gain for ex**   external*                       data    I/O*       name            type    type    function*       -------------------------------------------------------------------*	e0[]		float	i*	h[]		float	i****************************************************************************** DESCRIPTION**	For each lag:*	   a.  Filter first error signal (v0) through truncated*	       impulse response of perceptual weighting filter*	       (LPC filter with bandwidth broadening).*	   b.  Correlate filtered result with actual first error*	       signal (e0).*	   c.  Compute first order pitch filter coefficient (pgain)*	       and error (er) for each lag.**	Note:  Proper selection of the convolution length (len) depends on*	       the perceptual weighting filter's expansion factor (gamma)*	       which controls the damping of the impulse response.**	        This is one of CELP's most computationally intensive*	        routines.  Neglecting overhead, the approximate number of*		DSP instructions (add, multiply, multiply accumulate, or*		compare) per second (IPS) is:***	        C      : convolution (recursive truncated end-point correction)*               C'     : convolution (recursive truncated end-point correction)*               R  = E : full correlation & energy*               R' = E': delta correlation & energy*               G      : gain quantization*               G'     : delat gain quantization**	        IPS = 2.34 M (for integer delays)**	        i.e.,  L = 60, N = 128 pitch lags, N'= 32 delta delays*	               K = K'= 2 pitch updates/frame, and F=30 ms frame rate:**	               C = 9450, C'= 3690, R = E = 7680, R'= E'= 1920**	               IPS = 2.2 M**	pitch search complexity for integer delays:**#define j  10**	DSP chip instructions/operations:*	int MUL=1;		!multiply*	int ADD=1;		!add*	int SUB=1;		!subtract*	int MAC=1;		!multiply & accumulate*	int MAD=2;		!multiply & add*	int CMP=1;		!compare**	CELP algorithm parameters:*	int L=60;		!subframe length*	int len=30;		!length to truncate calculations (<= L)*	int K=4;		!number of subframes/frame*	int shift=2;		!shift between code words*	int g_bits=5;		!cbgain bit allocation*	float p=0.77;		!code book sparsity*	float F=30.e-3;		!time (seconds)/frame**	int N[j] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512};**	main()*	{*	  int i;*	  float C, R, E, G, IPS;*	  printf("\n    N       C          R          E          G       MIPS\n");*	  for (i = 0; i < j; i++)*	  {*	    C = (335)*MAD + (N[i]-1)*shift*(1.0-p)*len*ADD;*	    R = N[i]*L*MAC;*	    E = L*MAC + (N[i]-1)*((1.0-p*p)*L*MAC + (p*p)*2*MAD);*	    G = N[i]*(g_bits*(CMP+MUL+ADD) + 3*MUL+1*SUB);*	    IPS = (C+R+E+G)*K/F;*	    printf("  %4d  %f   %f   %f   %f  %f\n", N[i], C*K/1.e6/F,*                     R*K/1.e6/F,E*K/1.e6/F,G*K/1.e6/F,IPS/1.e6);*	  }*	}**     N       C          R          E          G       MIPS*     1  0.089333   0.008000   0.008000   0.002533  0.107867*     2  0.091173   0.016000   0.011573   0.005067  0.123813*     4  0.094853   0.032000   0.018719   0.010133  0.155706*     8  0.102213   0.064000   0.033011   0.020267  0.219491*    16  0.116933   0.128000   0.061595   0.040533  0.347062*    32  0.146373   0.256000   0.118763   0.081067  0.602203*    64  0.205253   0.512000   0.233100   0.162133  1.112486*   128  0.323013   1.024000   0.461773   0.324267  2.133053*   256  0.558533   2.048000   0.919118   0.648533  4.174185*   512  1.029573   4.096000   1.833810   1.297067  8.256450******************************************************************************* CALLED BY**	psearch** CALLS******************************************************************************** REFERENCES**	Tremain, Thomas E., Joseph P. Campbell, Jr and Vanoy C. Welch,*	"A 4.8 kbps Code Excited Linear Predictive Coder," Proceedings*	of the Mobile Satellite Conference, 3-5 May 1988, pp. 491-496.**	Campbell, Joseph P. Jr., Vanoy C. Welch and Thomas E. Tremain,*	"An Expandable Error-Protected 4800 bps CELP Coder (U.S. Federal*	Standard 4800 bps Voice Coder)," Proceedings of ICASSP, 1989.*	(and Proceedings of Speech Tech, 1989.)***************************************************************************/#include "ccsub.h"extern float e0[MAXLP], h[MAXLP];float pgain(ex, l, first, m, len, match)int l, first, m, len;float ex[], *match;{  register float cor, eng;  float y2[MAXLP], pgain;  static float y[MAXLP];  int i, j;  if (first)  {  /* *Calculate and save convolution of truncated (to len)     *impulse response for first lag of t (=mmin) samples:  	        min(i, len-1)	   y     =  SUM  h * ex       , where i = 0, ..., L-1 points	    i, t    j=0   j    i-j	                  h |0 1...len-1 x x|	   ex |L-1  . . .  1 0|               = y[0]	     ex |L-1  . . .  1 0|             = y[1]	                       :                :	                 ex |L-1  . . .  1 0| = y[L-1]      									 */    for (i = 0; i < l; i++)    {      y[i] = 0.0;      for (j = 0; j <= i && j < len; j++)	y[i] += h[j] * ex[i - j];    }  }  else  {  /* *End correct the convolution sum on subsequent pitch lags:      y     =  0       0, t      y     =  y        + ex  * h   where i = 1, ..., L points       i, m     i-1, m-1   -m    i  and   m = t+1, ..., tmax lags      									 */    for (i = len - 1; i > 0; i--)      y[i - 1] += ex[0] * h[i];     for (i = l - 1; i > 0; i--)      y[i] = y[i - 1];    y[0] = ex[0] * h[0];  }  /* *For lags (m) shorter than frame size (l), replicate the short     *adaptive codeword to the full codeword length by     *overlapping and adding the convolutions:			 	 */  for (i = 0; i < l; i++)    y2[i] = y[i];  if (m < l)			  {  /* add in 2nd convolution		 				 */    for (i = m; i < l; i++)      y2[i] = y[i] + y[i - m];    if (m < l / 2)		    {    /* add in 3rd convolution		 				 */      for (i = 2 * m; i < l; i++)	y2[i] = y2[i] + y[i - 2 * m];    }  }  /* *Calculate correlation and energy:      e0 = r[n]   = spectrum prediction residual      y2 = r[n-m] = error weighting filtered reconstructed  	            pitch prediction signal (m = correlation lag)	 */  cor = 0.0;  eng = 0.0;  for (i = 0; i < l; i++)  {    cor += y2[i] * e0[i];    eng += y2[i] * y2[i];  }  /* *Compute gain and error:      NOTE: Actual MSPE = e0.e0 - pgain(2*cor-pgain*eng)            since e0.e0 is independent of the code word,	    minimizing MSPE is equivalent to maximizing:	         match = pgain(2*cor-pgain*eng)   (1)	    If unquantized pgain is used, this simplifies:	         match = cor*pgain      NOTE: Inferior results were obtained when quantized	    pgain was used in equation (1)???      NOTE: When the delay is less than the frame length, "match"	    is only an approximation to the actual error.		      Independent (open-loop) quantization of gain and match (index):	 */  if (eng <= 0.0)     eng = 1.0;  pgain = cor / eng;  *match = cor * pgain;  return (pgain);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -