📄 pctolsp3.c
字号:
/**************************************************************************** ROUTINE* pctolsp3** FUNCTION** compute LSP from predictor polynomial and quantize it** SYNOPSIS* subroutine pctolsp3(a, freq, bits, findex)** formal** data I/O* name type type function* -------------------------------------------------------------------* a float i a-polynomial a(0)=1* freq float i/o lsp frequency array/* output quantized frequency array* bits int i bit allocation* findex int o frequency index array******************************************************************************* DESCRIPTION** Compte the LSPs using Chebyshev polynomials and then quantize.** Taken from code written by Lionel Wolovitz, PSION PLC****************************************************************************** CALLED BY** celp** CALLS****************************************************************************** REFRENCES** Peter Kabal and Ravi Prakash Ramachandran, "The Computation of * Line Spectral Frequencies Using Chebyshev Polynomials," IEEE * Transactions on Acoustics, Speech, and Signal Processing, * Vol. ASSP-34, No. 6, December 1986***************************************************************************/#include <math.h>#include "ccsub.h"/* Extracts of code to do LSP root finding from predictor coefficients, and to convert back from roots to predictor coefficients. */static float lsp[MAXNO][16] ={ {0.01250000, 0.02125000, 0.02812500, 0.03125000, 0.03500000, 0.04250000, 0.05250000, 0.06250000}, {0.02625000, 0.02937500, 0.03312500, 0.03687500, 0.04062500, 0.04500000, 0.05000000, 0.05500000, 0.06000000, 0.06500000, 0.07000000, 0.07625000, 0.08375000, 0.09250000, 0.10125000, 0.11000000}, {0.05250000, 0.05750000, 0.06250000, 0.06750000, 0.07312500, 0.08000000, 0.08812500, 0.09687500, 0.10625000, 0.11875000, 0.13125000, 0.14375000, 0.15625000, 0.16875000, 0.18125000, 0.19375000}, {0.07750000, 0.08250000, 0.09000000, 0.09937500, 0.11000000, 0.12125000, 0.13500000, 0.14625000, 0.15875000, 0.17125000, 0.18375000, 0.19625000, 0.20875000, 0.22125000, 0.23375000, 0.24625000}, {0.12500000, 0.13125000, 0.14125000, 0.15125000, 0.16062500, 0.16875000, 0.17875000, 0.18875000, 0.19875000, 0.20875000, 0.21875000, 0.23125000, 0.24375000, 0.25625000, 0.26875000, 0.28125000}, {0.18375000, 0.19625000, 0.21125000, 0.22875000, 0.25000000, 0.27500000, 0.30000000, 0.32500000}, {0.22500000, 0.23500000, 0.24500000, 0.26250000, 0.28750000, 0.31000000, 0.33750000, 0.36250000}, {0.27812500, 0.30000000, 0.31562500, 0.33125000, 0.35000000, 0.36875000, 0.39375000, 0.41875000}, {0.34500000, 0.36000000, 0.37500000, 0.38750000, 0.40000000, 0.41375000, 0.42875000, 0.44375000}, {0.39875000, 0.40875000, 0.41875000, 0.42750000, 0.43625000, 0.44875000, 0.46375000, 0.47875000}};static float table[MAXNO][17] ={ { 0.99691746, 0.99110012, 0.98442723, 0.98078609, 0.97591778, 0.96455891, 0.94608763, 0.92388272, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0}, { 0.98642983, 0.98301624, 0.97841983, 0.97328029, 0.96760046, 0.96029536, 0.95105858, 0.94088325, 0.92977943, 0.91775807, 0.90483103, 0.88741813, 0.86471905, 0.83581413, 0.80438365, 0.77052259, -2.0}, { 0.94608763, 0.93544674, 0.92388272, 0.91140698, 0.89629734, 0.87631182, 0.85058793, 0.82040883, 0.78532570, 0.73433325, 0.67881359, 0.61910900, 0.55558755, 0.48864087, 0.41868168, 0.34614129, -2.0}, { 0.88377046, 0.86863696, 0.84433435, 0.81132672, 0.77052259, 0.72358094, 0.66132536, 0.60669785, 0.54245932, 0.47487648, 0.40436600, 0.33136257, 0.25631627, 0.17968976, 0.10195545, 0.02359258, -2.0}, { 0.70711856, 0.67881359, 0.63136740, 0.58142959, 0.53252513, 0.48864087, 0.43289406, 0.37543889, 0.31650210, 0.25631627, 0.19511892, 0.11756801, 0.03929228, -0.03922568, -0.11750182, -0.19505355, -2.0}, { 0.40436600, 0.33136257, 0.24110239, 0.13315156, 0.00003333, -0.15639826, -0.30897896, -0.45395190, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0}, { 0.15646409, 0.09413950, 0.03144340, -0.07842421, -0.23340810, -0.36808613, -0.52246020, -0.64941130, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0}, {-0.17575978, -0.30897896, -0.40071028, -0.48858271, -0.58774750, -0.67876465, -0.78528443, -0.87246873, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0}, {-0.56204534, -0.63738701, -0.70707143, -0.76037242, -0.80898565, -0.85668907, -0.90143037, -0.93817086, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0}, {-0.80434405, -0.84006400, -0.87246873, -0.89800250, -0.92082280, -0.94858126, -0.97415943, -0.99109125, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0}};pctolsp3(a, freq, sbits, findex)int *findex, *sbits;float *a, *freq;{ register int index; int *f, *s; float prev1, prev2; float *r, *x3, *x4, temp, temp0, temp1, temp2; float q[6], p[6]; q[1] = a[1] + a[10] - 1.0; q[2] = a[2] + a[9] - q[1]; q[3] = a[3] + a[8] - q[2]; q[4] = a[4] + a[7] - q[3]; q[5] = a[5] + a[6] - q[4]; q[5] /= 2.0; p[1] = a[1] - a[10] + 1.0; p[2] = a[2] - a[9] + p[1]; p[3] = a[3] - a[8] + p[2]; p[4] = a[4] - a[7] + p[3]; p[5] = a[5] - a[6] + p[4]; p[5] /= 2.0; prev1 = 9e9; prev2 = 9e9; x3 = (&table[0][0]); x4 = (&lsp[0][0]); r = (&freq[0]); s = (&sbits[0]); f = (&findex[0]); index = 0; for (;;) { for (;;) { /* evaluate sum polynomial (5 adds, 4 subs, 4 muls) */ temp = (x3[index]); temp1 = 2.0*temp + q[1]; temp2 = 2.0*temp*temp1 - 1.0 + q[2]; temp0 = 2.0*temp*temp2 - temp1 + q[3]; temp1 = 2.0*temp*temp0 - temp2 + q[4]; temp2 = temp*temp1 - temp0 + q[5]; /* look for sign change */ if ((temp2*prev1) < 0.0 || index+1 == 1<<*s) { if (fabs(temp2) < fabs(prev1)) (*r++) = (x4[index]); else (*r++) = (x4[--index]); if (prev1 < 0.0) prev1 = 9e9; else prev1 = (-9e9); *f++ = index; if (r < (&freq[10])) { x3 += 17; x4 += 16; s++; index = 0; while (x4[index] < *(r-1)) index++; break; } else return; } prev1 = temp2; index++; } for (;;) { /* evaluate sum polynomial (5 adds, 4 subs, 4 muls) */ temp = (x3[index]); temp1 = 2.0*temp + p[1]; temp2 = 2.0*temp*temp1 - 1.0 + p[2]; temp0 = 2.0*temp*temp2 - temp1 + p[3]; temp1 = 2.0*temp*temp0 - temp2 + p[4]; temp2 = temp*temp1 - temp0 + p[5]; /* look for sign change */ if ((temp2*prev2) < 0.0 || index+1 == 1<<*s) { if (fabs(temp2) < fabs(prev2)) (*r++) = (x4[index]); else (*r++) = (x4[--index]); if (prev2 < 0.0) prev2 = 9e9; else prev2 = (-9e9); *f++ = index; if (r < (&freq[10])) { x3 += 17; x4 += 16; s++; index = 0; while (x4[index] < *(r-1)) index++; break; } else return; } prev2 = temp2; index++; } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -