⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 models_8hpp-source.html

📁 Bayes滤波器算法C++类说明文档,源码见Bayes滤波器算法
💻 HTML
📖 第 1 页 / 共 3 页
字号:
00200     Likelihood_uncorrelated li;00201 };00202 00203 <span class="comment">// General Linear Uncorrelated Addative and Likelihood observe model</span><a name="l00204"></a><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html">00204</a> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html">General_LiUnAd_observe_model</a> : <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Linear__uncorrelated__observe__model.html">Linear_uncorrelated_observe_model</a>, <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>00205 {00206 <span class="keyword">public</span>:<a name="l00207"></a><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a0">00207</a>     <a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a0">General_LiUnAd_observe_model</a> (size_t x_size, size_t z_size) :00208         <a class="code" href="classBayesian__filter_1_1Linear__uncorrelated__observe__model.html">Linear_uncorrelated_observe_model</a>(x_size, z_size),00209         <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>(z_size),00210         li(z_size)00211     {}<a name="l00212"></a><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a1">00212</a>     <span class="keyword">virtual</span> <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a1">L</a>(<span class="keyword">const</span> FM::Vec&amp; x) <span class="keyword">const</span>00213     <span class="comment">// Definition of likelihood for addative noise model given zz</span>00214     {   <span class="keywordflow">return</span> li.L(*<span class="keyword">this</span>, <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html#p0">z</a>, <a class="code" href="classBayesian__filter_1_1Linear__uncorrelated__observe__model.html#a1">h</a>(x));00215     }<a name="l00216"></a><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a2">00216</a>     <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a2">Lz</a> (<span class="keyword">const</span> FM::Vec&amp; zz)00217     <span class="comment">// Fix the observation zz about which to evaluate the Likelihood function</span>00218     <span class="comment">// Zv is also fixed</span>00219     {   Likelihood_observe_model::z = zz;00220         li.Lz(*<span class="keyword">this</span>);00221     }00222 00223 <span class="keyword">private</span>:00224     General_LzUnAd_observe_model::Likelihood_uncorrelated li;00225 };00226 00227 <span class="comment">// General Linearised Correlated Addative and Likelihood observe model</span><a name="l00228"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html">00228</a> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html">General_LzCoAd_observe_model</a> : <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Linrz__correlated__observe__model.html">Linrz_correlated_observe_model</a>, <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>00229 {00230 <span class="keyword">public</span>:<a name="l00231"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a0">00231</a>     <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a0">General_LzCoAd_observe_model</a> (size_t x_size, size_t z_size) :00232         <a class="code" href="classBayesian__filter_1_1Linrz__correlated__observe__model.html">Linrz_correlated_observe_model</a>(x_size, z_size),00233         <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>(z_size),00234         li(z_size)00235     {}<a name="l00236"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a1">00236</a>     <span class="keyword">virtual</span> <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a1">L</a>(<span class="keyword">const</span> FM::Vec&amp; x) <span class="keyword">const</span>00237     <span class="comment">// Definition of likelihood for addative noise model given zz</span>00238     {   <span class="keywordflow">return</span> li.L(*<span class="keyword">this</span>, <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html#p0">z</a>, <a class="code" href="classBayesian__filter_1_1Parametised__observe__model.html#a1">h</a>(x));00239     }<a name="l00240"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a2">00240</a>     <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a2">Lz</a> (<span class="keyword">const</span> FM::Vec&amp; zz)00241     <span class="comment">// Fix the observation zz about which to evaluate the Likelihood function</span>00242     <span class="comment">// Zv is also fixed</span>00243     {   Likelihood_observe_model::z = zz;00244         li.Lz(*<span class="keyword">this</span>);00245     }00246 00247 <span class="keyword">private</span>:<a name="l00248"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#n0">00248</a>     <span class="keyword">friend</span> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html">General_LiCoAd_observe_model</a>;00249     <span class="keyword">struct </span>Likelihood_correlated00250     {00251         Likelihood_correlated(size_t z_size) :00252             zInnov(z_size), Z_inv(z_size,z_size)00253         {   zset = <span class="keyword">false</span>;00254         }00255         <span class="keyword">mutable</span> FM::Vec zInnov; <span class="comment">// Normailised innovation, temporary for L(x)</span>00256         FM::SymMatrix Z_inv;    <span class="comment">// Inverse Noise Covariance</span>00257         <a class="code" href="namespaceBayesian__filter__matrix.html#a0">Float</a> logdetZ;          <span class="comment">// log(det(Z)</span>00258         <span class="keywordtype">bool</span> zset;  00259         <span class="keyword">static</span> <a class="code" href="namespaceBayesian__filter__matrix.html#a0">Float</a> scaled_vector_square(<span class="keyword">const</span> FM::Vec&amp; v, <span class="keyword">const</span> FM::SymMatrix&amp; V);00260         <a class="code" href="namespaceBayesian__filter__matrix.html#a0">Float</a> <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a1">L</a>(<span class="keyword">const</span> Correlated_addative_observe_model&amp; model, <span class="keyword">const</span> FM::Vec&amp; z, <span class="keyword">const</span> FM::Vec&amp; zp) <span class="keyword">const</span>;00261         <span class="comment">// Definition of likelihood for addative noise model given zz</span>00262         <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a2">Lz</a>(<span class="keyword">const</span> Correlated_addative_observe_model&amp; model);00263     };00264     Likelihood_correlated li;00265 };00266 00267 <span class="comment">// General Linear Correlated Addative and Likelihood observe model</span><a name="l00268"></a><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html">00268</a> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html">General_LiCoAd_observe_model</a> : <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Linear__correlated__observe__model.html">Linear_correlated_observe_model</a>, <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>00269 {00270 <span class="keyword">public</span>:<a name="l00271"></a><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a0">00271</a>     <a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a0">General_LiCoAd_observe_model</a> (size_t x_size, size_t z_size) :00272         <a class="code" href="classBayesian__filter_1_1Linear__correlated__observe__model.html">Linear_correlated_observe_model</a>(x_size, z_size),00273         <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>(z_size),00274         li(z_size)00275     {}<a name="l00276"></a><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a1">00276</a>     <span class="keyword">virtual</span> <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a1">L</a>(<span class="keyword">const</span> FM::Vec&amp; x) <span class="keyword">const</span>00277     <span class="comment">// Definition of likelihood for addative noise model given zz</span>00278     {   <span class="keywordflow">return</span> li.L(*<span class="keyword">this</span>, <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html#p0">z</a>, <a class="code" href="classBayesian__filter_1_1Linear__correlated__observe__model.html#a1">h</a>(x));00279     }<a name="l00280"></a><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a2">00280</a>     <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a2">Lz</a> (<span class="keyword">const</span> FM::Vec&amp; zz)00281     <span class="comment">// Fix the observation zz about which to evaluate the Likelihood function</span>00282     <span class="comment">// Zv is also fixed</span>00283     {   Likelihood_observe_model::z = zz;00284         li.Lz(*<span class="keyword">this</span>);00285     }00286 00287 <span class="keyword">private</span>:00288     General_LzCoAd_observe_model::Likelihood_correlated li;00289 };00290 00291 00292 }<span class="comment">// namespace</span>00293 00294 <span class="preprocessor">#endif</span></pre></div><hr size="1"><address style="align: right;"><small>Generated on Mon Feb 16 11:20:40 2004 for Bayes++ Bayesian Filtering Classes by<a href="http://www.doxygen.org/index.html"><img src="doxygen.png" alt="doxygen" align="middle" border=0 > </a>1.3.2 </small></address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -