📄 models_8hpp-source.html
字号:
00200 Likelihood_uncorrelated li;00201 };00202 00203 <span class="comment">// General Linear Uncorrelated Addative and Likelihood observe model</span><a name="l00204"></a><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html">00204</a> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html">General_LiUnAd_observe_model</a> : <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Linear__uncorrelated__observe__model.html">Linear_uncorrelated_observe_model</a>, <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>00205 {00206 <span class="keyword">public</span>:<a name="l00207"></a><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a0">00207</a> <a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a0">General_LiUnAd_observe_model</a> (size_t x_size, size_t z_size) :00208 <a class="code" href="classBayesian__filter_1_1Linear__uncorrelated__observe__model.html">Linear_uncorrelated_observe_model</a>(x_size, z_size),00209 <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>(z_size),00210 li(z_size)00211 {}<a name="l00212"></a><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a1">00212</a> <span class="keyword">virtual</span> <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a1">L</a>(<span class="keyword">const</span> FM::Vec& x) <span class="keyword">const</span>00213 <span class="comment">// Definition of likelihood for addative noise model given zz</span>00214 { <span class="keywordflow">return</span> li.L(*<span class="keyword">this</span>, <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html#p0">z</a>, <a class="code" href="classBayesian__filter_1_1Linear__uncorrelated__observe__model.html#a1">h</a>(x));00215 }<a name="l00216"></a><a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a2">00216</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1General__LiUnAd__observe__model.html#a2">Lz</a> (<span class="keyword">const</span> FM::Vec& zz)00217 <span class="comment">// Fix the observation zz about which to evaluate the Likelihood function</span>00218 <span class="comment">// Zv is also fixed</span>00219 { Likelihood_observe_model::z = zz;00220 li.Lz(*<span class="keyword">this</span>);00221 }00222 00223 <span class="keyword">private</span>:00224 General_LzUnAd_observe_model::Likelihood_uncorrelated li;00225 };00226 00227 <span class="comment">// General Linearised Correlated Addative and Likelihood observe model</span><a name="l00228"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html">00228</a> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html">General_LzCoAd_observe_model</a> : <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Linrz__correlated__observe__model.html">Linrz_correlated_observe_model</a>, <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>00229 {00230 <span class="keyword">public</span>:<a name="l00231"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a0">00231</a> <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a0">General_LzCoAd_observe_model</a> (size_t x_size, size_t z_size) :00232 <a class="code" href="classBayesian__filter_1_1Linrz__correlated__observe__model.html">Linrz_correlated_observe_model</a>(x_size, z_size),00233 <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>(z_size),00234 li(z_size)00235 {}<a name="l00236"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a1">00236</a> <span class="keyword">virtual</span> <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a1">L</a>(<span class="keyword">const</span> FM::Vec& x) <span class="keyword">const</span>00237 <span class="comment">// Definition of likelihood for addative noise model given zz</span>00238 { <span class="keywordflow">return</span> li.L(*<span class="keyword">this</span>, <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html#p0">z</a>, <a class="code" href="classBayesian__filter_1_1Parametised__observe__model.html#a1">h</a>(x));00239 }<a name="l00240"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a2">00240</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a2">Lz</a> (<span class="keyword">const</span> FM::Vec& zz)00241 <span class="comment">// Fix the observation zz about which to evaluate the Likelihood function</span>00242 <span class="comment">// Zv is also fixed</span>00243 { Likelihood_observe_model::z = zz;00244 li.Lz(*<span class="keyword">this</span>);00245 }00246 00247 <span class="keyword">private</span>:<a name="l00248"></a><a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#n0">00248</a> <span class="keyword">friend</span> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html">General_LiCoAd_observe_model</a>;00249 <span class="keyword">struct </span>Likelihood_correlated00250 {00251 Likelihood_correlated(size_t z_size) :00252 zInnov(z_size), Z_inv(z_size,z_size)00253 { zset = <span class="keyword">false</span>;00254 }00255 <span class="keyword">mutable</span> FM::Vec zInnov; <span class="comment">// Normailised innovation, temporary for L(x)</span>00256 FM::SymMatrix Z_inv; <span class="comment">// Inverse Noise Covariance</span>00257 <a class="code" href="namespaceBayesian__filter__matrix.html#a0">Float</a> logdetZ; <span class="comment">// log(det(Z)</span>00258 <span class="keywordtype">bool</span> zset; 00259 <span class="keyword">static</span> <a class="code" href="namespaceBayesian__filter__matrix.html#a0">Float</a> scaled_vector_square(<span class="keyword">const</span> FM::Vec& v, <span class="keyword">const</span> FM::SymMatrix& V);00260 <a class="code" href="namespaceBayesian__filter__matrix.html#a0">Float</a> <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a1">L</a>(<span class="keyword">const</span> Correlated_addative_observe_model& model, <span class="keyword">const</span> FM::Vec& z, <span class="keyword">const</span> FM::Vec& zp) <span class="keyword">const</span>;00261 <span class="comment">// Definition of likelihood for addative noise model given zz</span>00262 <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1General__LzCoAd__observe__model.html#a2">Lz</a>(<span class="keyword">const</span> Correlated_addative_observe_model& model);00263 };00264 Likelihood_correlated li;00265 };00266 00267 <span class="comment">// General Linear Correlated Addative and Likelihood observe model</span><a name="l00268"></a><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html">00268</a> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html">General_LiCoAd_observe_model</a> : <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Linear__correlated__observe__model.html">Linear_correlated_observe_model</a>, <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>00269 {00270 <span class="keyword">public</span>:<a name="l00271"></a><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a0">00271</a> <a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a0">General_LiCoAd_observe_model</a> (size_t x_size, size_t z_size) :00272 <a class="code" href="classBayesian__filter_1_1Linear__correlated__observe__model.html">Linear_correlated_observe_model</a>(x_size, z_size),00273 <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html">Likelihood_observe_model</a>(z_size),00274 li(z_size)00275 {}<a name="l00276"></a><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a1">00276</a> <span class="keyword">virtual</span> <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a1">L</a>(<span class="keyword">const</span> FM::Vec& x) <span class="keyword">const</span>00277 <span class="comment">// Definition of likelihood for addative noise model given zz</span>00278 { <span class="keywordflow">return</span> li.L(*<span class="keyword">this</span>, <a class="code" href="classBayesian__filter_1_1Likelihood__observe__model.html#p0">z</a>, <a class="code" href="classBayesian__filter_1_1Linear__correlated__observe__model.html#a1">h</a>(x));00279 }<a name="l00280"></a><a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a2">00280</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1General__LiCoAd__observe__model.html#a2">Lz</a> (<span class="keyword">const</span> FM::Vec& zz)00281 <span class="comment">// Fix the observation zz about which to evaluate the Likelihood function</span>00282 <span class="comment">// Zv is also fixed</span>00283 { Likelihood_observe_model::z = zz;00284 li.Lz(*<span class="keyword">this</span>);00285 }00286 00287 <span class="keyword">private</span>:00288 General_LzCoAd_observe_model::Likelihood_correlated li;00289 };00290 00291 00292 }<span class="comment">// namespace</span>00293 00294 <span class="preprocessor">#endif</span></pre></div><hr size="1"><address style="align: right;"><small>Generated on Mon Feb 16 11:20:40 2004 for Bayes++ Bayesian Filtering Classes by<a href="http://www.doxygen.org/index.html"><img src="doxygen.png" alt="doxygen" align="middle" border=0 > </a>1.3.2 </small></address></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -