⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 unsflt_8hpp-source.html

📁 Bayes滤波器算法C++类说明文档,源码见Bayes滤波器算法
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<a name="l00070"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html">00070</a> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html">Unscented_scheme</a> : <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Linrz__kalman__filter.html">Linrz_kalman_filter</a>, <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Functional__filter.html">Functional_filter</a>00071 {00072 <span class="keyword">private</span>:00073     size_t q_max;           <span class="comment">// Maxiumum size allocated for noise model, constructed before XX</span>00074 <span class="keyword">public</span>:<a name="l00075"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#o0">00075</a>     FM::ColMatrix <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#o0">XX</a>;       <span class="comment">// Unscented form of state, with associated kappa</span><a name="l00076"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#o1">00076</a>     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#o1">kappa</a>;00077 00078     <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a0">Unscented_scheme</a> (size_t x_size, size_t z_initialsize = 0);00079     <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html">Unscented_scheme</a>&amp; <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a1">operator= </a>(<span class="keyword">const</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html">Unscented_scheme</a>&amp;);00080     <span class="comment">// Optimise copy assignment to only copy filter state</span>00081 00082     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a2">init</a> ();00083     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a3">init_XX</a> ();00084     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a4">update</a> ();00085     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a5">update_XX</a> (Float kappa);00086 00087     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a6">predict</a> (<a class="code" href="classBayesian__filter_1_1Unscented__predict__model.html">Unscented_predict_model</a>&amp; f);00088     <span class="comment">// Efficient Unscented prediction </span>00089     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a6">predict</a> (<a class="code" href="classBayesian__filter_1_1Functional__predict__model.html">Functional_predict_model</a>&amp; f);00090     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a6">predict</a> (<a class="code" href="classBayesian__filter_1_1Addative__predict__model.html">Addative_predict_model</a>&amp; f);<a name="l00091"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a9">00091</a>     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a6">predict</a> (<a class="code" href="classBayesian__filter_1_1Linrz__predict__model.html">Linrz_predict_model</a>&amp; f)00092     {   <span class="comment">// Adapt to use the more general addative model</span>00093         <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a6">predict</a>(static_cast&lt;Addative_predict_model&amp;&gt;(f));00094         <span class="keywordflow">return</span> 1.;      <span class="comment">// Always well condition for addative predict</span>00095     }00096     00097     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a10">observe</a> (Uncorrelated_addative_observe_model&amp; h, <span class="keyword">const</span> FM::Vec&amp; z);00098     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a10">observe</a> (Correlated_addative_observe_model&amp; h, <span class="keyword">const</span> FM::Vec&amp; z);00099     <span class="comment">// Unscented filter implements general addative observe models </span>00100     <a name="l00101"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a12">00101</a>     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a10">observe</a> (<a class="code" href="classBayesian__filter_1_1Linrz__uncorrelated__observe__model.html">Linrz_uncorrelated_observe_model</a>&amp; h, <span class="keyword">const</span> FM::Vec&amp; z)00102     {   <span class="comment">// Adapt to use the more general addative model</span>00103         <span class="keywordflow">return</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a10">observe</a> (static_cast&lt;Uncorrelated_addative_observe_model&amp;&gt;(h),z);00104     }<a name="l00105"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a13">00105</a>     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a10">observe</a> (<a class="code" href="classBayesian__filter_1_1Linrz__correlated__observe__model.html">Linrz_correlated_observe_model</a>&amp; h, <span class="keyword">const</span> FM::Vec&amp; z)00106     {   <span class="comment">// Adapt to use the more general addative model</span>00107         <span class="keywordflow">return</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#a10">observe</a> (static_cast&lt;Correlated_addative_observe_model&amp;&gt;(h),z);00108     }00109 00110 <span class="keyword">public</span>:                     <span class="comment">// Exposed Numerical Results</span><a name="l00111"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#o2">00111</a>     FM::Vec <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#o2">s</a>;                  <span class="comment">// Innovation</span><a name="l00112"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#o4">00112</a>     FM::SymMatrix <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#o3">S</a>, <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#o4">SI</a>;        <span class="comment">// Innovation Covariance and Inverse</span>00113 00114 <span class="keyword">protected</span>:00115     <span class="keyword">virtual</span> <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#b0">predict_Kappa</a> (size_t size) <span class="keyword">const</span>;00116     <span class="keyword">virtual</span> <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#b1">observe_Kappa</a> (size_t size) <span class="keyword">const</span>;00117     <span class="comment">/* unscented Kappa values</span>00118 <span class="comment">       default uses the rule which minimise mean squared error of 4th order term</span>00119 <span class="comment">    */</span>00120 00121 <span class="keyword">protected</span>:                  <span class="comment">// allow fast operation if z_size remains constant</span><a name="l00122"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#p0">00122</a>     size_t <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#p0">last_z_size</a>;00123     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#b2">observe_size</a> (size_t z_size);00124 00125 <span class="keyword">private</span>:00126     <span class="keywordtype">void</span> unscented (FM::ColMatrix&amp; XX, <span class="keyword">const</span> FM::Vec&amp; x, <span class="keyword">const</span> FM::SymMatrix&amp; X, Float scale);00127     <span class="comment">/* Determine Unscented points for a distribution */</span>00128     size_t x_size;00129     size_t XX_size; <span class="comment">// 2*x_size+1</span>00130 00131 <span class="keyword">protected</span>:                  <span class="comment">// Permenantly allocated temps</span><a name="l00132"></a><a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#p1">00132</a>     FM::ColMatrix <a class="code" href="classBayesian__filter_1_1Unscented__scheme.html#p1">fXX</a>;00133 };00134 00135 00136 }<span class="comment">//namespace</span>00137 <span class="preprocessor">#endif</span></pre></div><hr size="1"><address style="align: right;"><small>Generated on Mon Feb 16 11:20:41 2004 for Bayes++ Bayesian Filtering Classes by<a href="http://www.doxygen.org/index.html"><img src="doxygen.png" alt="doxygen" align="middle" border=0 > </a>1.3.2 </small></address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -