⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itrflt_8hpp-source.html

📁 Bayes滤波器算法C++类说明文档,源码见Bayes滤波器算法
💻 HTML
📖 第 1 页 / 共 2 页
字号:
00065     }00066 };00067 <a name="l00068"></a><a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html">00068</a> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html">Counted_iterated_terminator</a> : <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Iterated__terminator.html">Iterated_terminator</a>00069 <span class="comment">/*</span>00070 <span class="comment"> * Termination condition with a simple fixed number of iterations </span>00071 <span class="comment"> */</span>00072 {00073 <span class="keyword">public</span>:<a name="l00074"></a><a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html#a0">00074</a>     <a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html#a0">Counted_iterated_terminator</a> (<a class="code" href="classBayesian__filter_1_1Iterated__observe__model.html">Iterated_observe_model</a>&amp; model, <span class="keywordtype">unsigned</span> iterations) :00075         <a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html#o0">m</a>(model), <a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html#o1">i</a>(iterations)00076     {}00077     <span class="keywordtype">bool</span> <a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html#a1">term_or_relinearize</a> (<span class="keyword">const</span> Iterated_covariance_scheme&amp; f);<a name="l00078"></a><a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html#o0">00078</a>     <a class="code" href="classBayesian__filter_1_1Iterated__observe__model.html">Iterated_observe_model</a>&amp; <a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html#o0">m</a>;<a name="l00079"></a><a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html#o1">00079</a>     <span class="keywordtype">unsigned</span> <a class="code" href="classBayesian__filter_1_1Counted__iterated__terminator.html#o1">i</a>;00080 };00081 00082 00083 <a name="l00084"></a><a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html">00084</a> <span class="keyword">class </span><a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html">Iterated_covariance_scheme</a> : <span class="keyword">public</span> <a class="code" href="classBayesian__filter_1_1Linrz__kalman__filter.html">Linrz_kalman_filter</a>00085 {00086 <span class="keyword">public</span>:00087     <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a0">Iterated_covariance_scheme</a> (size_t x_size, size_t z_initialsize = 0);00088     <span class="comment">/* Initialised filter requries an addition iteration limit for the</span>00089 <span class="comment">       observe algorithm */</span>00090     <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html">Iterated_covariance_scheme</a>&amp; <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a1">operator= </a>(<span class="keyword">const</span> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html">Iterated_covariance_scheme</a>&amp;);00091     <span class="comment">// Optimise copy assignment to only copy filter state</span>00092 00093     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a2">init</a> ();00094     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a3">update</a> ();00095     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a4">predict</a> (<a class="code" href="classBayesian__filter_1_1Linrz__predict__model.html">Linrz_predict_model</a>&amp; f);00096 00097     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a5">observe</a> (<a class="code" href="classBayesian__filter_1_1Linrz__uncorrelated__observe__model.html">Linrz_uncorrelated_observe_model</a>&amp; h, <a class="code" href="classBayesian__filter_1_1Iterated__terminator.html">Iterated_terminator</a>&amp; term, <span class="keyword">const</span> FM::Vec&amp; z);00098     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a5">observe</a> (<a class="code" href="classBayesian__filter_1_1Linrz__correlated__observe__model.html">Linrz_correlated_observe_model</a>&amp; h, <a class="code" href="classBayesian__filter_1_1Iterated__terminator.html">Iterated_terminator</a>&amp; term, <span class="keyword">const</span> FM::Vec&amp; z);00099     <span class="comment">// Observe with iteration</span><a name="l00100"></a><a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a7">00100</a>     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a5">observe</a> (<a class="code" href="classBayesian__filter_1_1Linrz__uncorrelated__observe__model.html">Linrz_uncorrelated_observe_model</a>&amp; h, <span class="keyword">const</span> FM::Vec&amp; z)00101     {   <span class="comment">// Observe with default termination</span>00102         <a class="code" href="classBayesian__filter_1_1Iterated__terminator.html">Iterated_terminator</a> term;00103         <span class="keywordflow">return</span> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a5">observe</a> (h, term, z);00104     }<a name="l00105"></a><a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a8">00105</a>     <a class="code" href="classBayesian__filter_1_1Bayes__base.html#w0">Float</a> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a5">observe</a> (<a class="code" href="classBayesian__filter_1_1Linrz__correlated__observe__model.html">Linrz_correlated_observe_model</a>&amp; h, <span class="keyword">const</span> FM::Vec&amp; z)00106     {   <span class="comment">// Observe with default termination</span>00107         <a class="code" href="classBayesian__filter_1_1Iterated__terminator.html">Iterated_terminator</a> term;00108         <span class="keywordflow">return</span> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#a5">observe</a> (h, term, z);00109     }00110 00111 <span class="keyword">public</span>:                     <span class="comment">// Exposed Numerical Results</span><a name="l00112"></a><a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#o1">00112</a>     FM::SymMatrix <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#o0">S</a>, <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#o1">SI</a>;        <span class="comment">// Innovation Covariance and Inverse</span>00113 00114 <span class="keyword">protected</span>:                  <span class="comment">// Permenantly allocated temps</span><a name="l00115"></a><a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#p0">00115</a>     FM::RowMatrix <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#p0">tempX</a>;00116 00117 <span class="keyword">protected</span>:                  <span class="comment">// allow fast operation if z_size remains constant</span><a name="l00118"></a><a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#p1">00118</a>     size_t <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#p1">last_z_size</a>;00119     <span class="keywordtype">void</span> <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#b0">observe_size</a> (size_t z_size);00120                             <span class="comment">// Permenantly allocated temps</span><a name="l00121"></a><a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#p2">00121</a>     FM::Vec <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#p2">s</a>;<a name="l00122"></a><a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#p3">00122</a>     FM::Matrix <a class="code" href="classBayesian__filter_1_1Iterated__covariance__scheme.html#p3">HxT</a>;00123 };00124 00125 00126 }<span class="comment">//namespace</span>00127 <span class="preprocessor">#endif</span></pre></div><hr size="1"><address style="align: right;"><small>Generated on Mon Feb 16 11:20:39 2004 for Bayes++ Bayesian Filtering Classes by<a href="http://www.doxygen.org/index.html"><img src="doxygen.png" alt="doxygen" align="middle" border=0 > </a>1.3.2 </small></address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -