⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eliap.cc

📁 Gambit 是一个游戏库理论软件
💻 CC
字号:
//// $Source: /home/gambit/CVS/gambit/sources/nash/eliap.cc,v $// $Date: 2002/09/10 14:27:40 $// $Revision: 1.9.2.2 $//// DESCRIPTION:// Compute Nash equilibria via Lyapunov function minimization//// This file is part of Gambit// Copyright (c) 2002, The Gambit Project//// This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License as published by// the Free Software Foundation; either version 2 of the License, or// (at your option) any later version.//// This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License// along with this program; if not, write to the Free Software// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.//#include "eliap.h"#include "math/gmatrix.h"#include "numerical/gfuncmin.h"class EFLiapFunc : public gC1Function<double>  {private:  mutable long _nevals;  const efgGame &_efg;  mutable BehavProfile<double> _p;  double Value(const gVector<double> &x) const;  bool Gradient(const gVector<double> &, gVector<double> &) const;public:  EFLiapFunc(const efgGame &, const BehavProfile<double> &);  virtual ~EFLiapFunc();      long NumEvals(void) const  { return _nevals; }};EFLiapFunc::EFLiapFunc(const efgGame &E,		       const BehavProfile<double> &start)  : _nevals(0L), _efg(E), _p(start){ }EFLiapFunc::~EFLiapFunc(){ }double EFLiapFunc::Value(const gVector<double> &v) const{  _nevals++;  ((gVector<double> &) _p).operator=(v);    //_p = v;  return _p.LiapValue();}//// This function projects a gradient into the plane of the simplex.// (Actually, it works by computing the projection of 'x' onto the// vector perpendicular to the plane, then subtracting to compute the// component parallel to the plane.)//static void Project(gVector<double> &x, const gArray<int> &lengths){  int index = 1;  for (int part = 1; part <= lengths.Length(); part++)  {    double avg = 0.0;    int j;    for (j = 1; j <= lengths[part]; j++, index++)  {      avg += x[index];    }    avg /= (double) lengths[part];    index -= lengths[part];    for (j = 1; j <= lengths[part]; j++, index++)  {      x[index] -= avg;    }  }}bool EFLiapFunc::Gradient(const gVector<double> &x,			  gVector<double> &grad) const{  const double DELTA = .00001;  ((gVector<double> &) _p).operator=(x);  for (int i = 1; i <= x.Length(); i++) {    _p[i] += DELTA;    double value = Value(_p.GetDPVector());    _p[i] -= 2.0 * DELTA;    value -= Value(_p.GetDPVector());    _p[i] += DELTA;    grad[i] = value / (2.0 * DELTA);  }  Project(grad, _p.GetPVector().Lengths());  return true;}static void PickRandomProfile(BehavProfile<double> &p){  double sum, tmp;  for (int pl = 1; pl <= p.GetGame().NumPlayers(); pl++)  {    for (int iset = 1; iset <= p.GetGame().Players()[pl]->NumInfosets();	 iset++)  {      sum = 0.0;      int act;          for (act = 1; act < p.Support().NumActions(pl, iset); act++)  {	do	  tmp = Uniform();	while (tmp + sum > 1.0);	p(pl, iset, act) = tmp;	sum += tmp;      }  // with truncation, this is unnecessary      p(pl, iset, act) = 1.0 - sum;    }  }}efgLiap::efgLiap(void)  : m_stopAfter(1), m_numTries(10), m_maxits1(100), m_maxitsN(20),    m_tol1(2.0e-10), m_tolN(1.0e-10){ }gList<BehavSolution> efgLiap::Solve(const EFSupport &p_support,				    gStatus &p_status){  static const double ALPHA = .00000001;  BehavProfile<double> p(p_support);  EFLiapFunc F(p_support.GetGame(), p);  // if starting vector not interior, perturb it towards centroid  int kk;  for (int kk = 1; kk <= p.Length() && p[kk] > ALPHA; kk++);  if (kk <= p.Length()) {    BehavProfile<double> c(p_support);    for (int k = 1; k <= p.Length(); k++) {      p[k] = c[k]*ALPHA + p[k]*(1.0-ALPHA);    }  }  gMatrix<double> xi(p.Length(), p.Length());  gList<BehavSolution> solutions;    try {    for (int i = 1; (m_numTries == 0 || i <= m_numTries) &&	   (m_stopAfter == 0 || solutions.Length() < m_stopAfter); 	 i++)   {      p_status.Get();      p_status.SetProgress((double) i / (double) m_numTries,			   gText("Attempt ") + ToText(i) + 			   gText(", equilibria so far: ") +			   ToText(solutions.Length()));       gConjugatePR minimizer(p.Length());      gVector<double> gradient(p.Length()), dx(p.Length());      double fval;      minimizer.Set(F, p.GetDPVector(), fval, gradient, .01, .0001);      try {	for (int iter = 1; iter <= m_maxitsN; iter++) {	  if (iter % 20 == 0) {	    p_status.Get();	  }	  	  if (!minimizer.Iterate(F, p.GetDPVector(), fval, gradient, dx)) {	    break;	  }	  if (sqrt(gradient.NormSquared()) < .001) {	    solutions.Append(BehavSolution(p, "Liap[EFG]"));	    break;	  }	}      }      catch (gFuncMinException &) { }    }    PickRandomProfile(p);  }  catch (gSignalBreak &) {    // Just stop and return any solutions found so far  }  // Any other exceptions propagate out, assuming something Real Bad happened  return solutions;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -