📄 poly.h
字号:
//// $Source: /home/gambit/CVS/gambit/sources/poly/poly.h,v $// $Date: 2002/08/27 17:29:48 $// $Revision: 1.2 $//// DESCRIPTION:// Declaration of polynomial classes//// This file is part of Gambit// Copyright (c) 2002, The Gambit Project//// This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License as published by// the Free Software Foundation; either version 2 of the License, or// (at your option) any later version.//// This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License// along with this program; if not, write to the Free Software// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.//#include <assert.h>#include "base/base.h"#include "math/rational.h"#include "interval.h"#include "math/gvector.h"#include "math/double.h"#include "math/complex.h"/* This file supplies the template class polynomialThese are univariate polynomials with coefficients of class T.Polynomials are implemented as gList's of coefficients. There is no attempt to maintain sparseness.*/template <class T> class polynomial {private: gList<T> coeflist; public: // constructors and destructor polynomial(const int=-1); polynomial(const polynomial<T> &); polynomial(const gList<T> &); polynomial(const gVector<T> &); polynomial(const T&, const int&); ~polynomial(); // unary operators polynomial<T> operator - () const; polynomial<T> Derivative () const; // binary operators polynomial<T>& operator = (const polynomial<T>& y); bool operator == (const polynomial<T>& y) const; bool operator != (const polynomial<T>& y) const; const T& operator [] (const int index) const; polynomial<T> operator + (const polynomial<T>& y) const; polynomial<T> operator - (const polynomial<T>& y) const; polynomial<T> operator * (const polynomial<T>& y) const; polynomial<T> operator / (const polynomial<T>& y) const; polynomial<T>& operator += (const polynomial<T>& y); polynomial<T>& operator -= (const polynomial<T>& y); polynomial<T>& operator *= (const polynomial<T>& y); polynomial<T>& operator /= (const polynomial<T>& y); polynomial<T> operator % (const polynomial<T>& y) const; // manipulation void ToMonic() ;// polynomial<gDouble> Togdouble() const; polynomial<gDouble> TogDouble() const; // information bool IsZero() const; T EvaluationAt(const T& arg) const; int Degree() const; T LeadingCoefficient() const; gList<T> CoefficientList() const; polynomial<T> GcdWith(const polynomial<T>&) const; bool IsQuadratfrei() const; bool CannotHaveRootsIn(const gInterval<T>&) const; gList< gInterval<T> > RootSubintervals(const gInterval<T>&) const; gInterval<T> NeighborhoodOfRoot(const gInterval<T>&, T&) const; gList< gInterval<T> > PreciseRootIntervals(const gInterval<T>&,T&) const; gList<T> PreciseRoots(const gInterval<T>&, T&) const; void Output(gOutput &) const;};template <class T> gOutput& operator <<(gOutput &, const polynomial<T> &);/* REMARKS The function cannot_have_roots_in is based on the principle that iff = a_0 + a_1x + ... + a_dx^dwith a_0 > 0, thenabs(f(t)) >= a_0 - max{abs(a_1),...,abs(a_d)}*(abs(t) + ... + abs(t)^d)and the RHS will be positive whenever//WRONG! abs(t) < a_0/(a_0 + max{abs(a_1),...,abs(a_d)}).*/class complexpoly {private: gList<gComplex> coeflist; public: // constructors and destructor complexpoly(const int=-1); complexpoly(const complexpoly &); complexpoly(const gList<gComplex> &); complexpoly(const gComplex&, const int&); ~complexpoly(); // unary operators complexpoly operator - () const; complexpoly Derivative () const; // binary operators complexpoly& operator = (const complexpoly& y); bool operator == (const complexpoly& y) const; bool operator != (const complexpoly& y) const; const gComplex& operator [] (const int index) const; complexpoly operator + (const complexpoly& y) const; complexpoly operator - (const complexpoly& y) const; complexpoly operator * (const complexpoly& y) const; complexpoly operator / (const complexpoly& y) const; complexpoly& operator += (const complexpoly& y); complexpoly& operator -= (const complexpoly& y); complexpoly& operator *= (const complexpoly& y); complexpoly& operator /= (const complexpoly& y); complexpoly operator % (const complexpoly& y) const; // manipulation void ToMonic() ; // information bool IsZero() const; gComplex EvaluationAt(const gComplex& arg) const; int Degree() const; gComplex LeadingCoefficient() const; complexpoly GcdWith(const complexpoly&) const; bool IsQuadratfrei() const; gList<gComplex> Roots() const; // outputfriend gOutput& operator << (gOutput& output, const complexpoly& x);};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -