📄 nonlinearequation.inl
字号:
{
it = 0;
g65(x, y, x1, y1, dx, dy, dd, dc, c, k, is, it);
if(it == 0) goto zjn;
}
gg90(cx, a, x, y, p, q, w, k);
}
}
}
if(k == 1) jt = 0;
else jt = 1;
}
return 1;
}
//牛顿下山法(NewtonHillDown)子函数
template <class _Ty>
inline void
g60(_Ty& t, _Ty& x, _Ty& y, _Ty& x1, _Ty& y1, _Ty& dx, _Ty& dy,
_Ty& p, _Ty& q, int& k, int& it)
{
it = 1;
while(it == 1)
{
t = t / 1.67;
it = 0;
x1 = x - t * dx;
y1 = y - t * dy;
if(k >= 50)
{
p = sqrt(x1 * x1 + y1 * y1);
q = exp(85.0 / k);
if(p >= q) it = 1;
}
}
}
//牛顿下山法(NewtonHillDown)子函数
template <class _Ty>
inline void
gg60(_Ty& t, _Ty& x, _Ty& y, _Ty& x1, _Ty& y1, _Ty& dx, _Ty& dy,
_Ty& p, _Ty& q, int& k, int& it)
{
it = 1;
while(it == 1)
{
t = t / 1.67;
it = 0;
x1 = x - t * dx;
y1 = y - t * dy;
if(k >= 30)
{
p = sqrt(x1 * x1 + y1 * y1);
q = exp(75.0 / k);
if(p >= q) it = 1;
}
}
return;
}
//牛顿下山法(NewtonHillDown)子函数
template <class _Ty, class _Tz>
inline void
g90(valarray<_Tz> &cx, valarray<_Ty> &a, _Ty& x, _Ty& y, _Ty& p, _Ty& q, _Ty& w, int &k)
{
int i;
if(Abs(y) <= 1.0e-06)
{
p = -x;
y = 0.0;
q = 0.0;
}
else
{
p = -2.0 * x;
q = x * x + y * y;
cx[k - 1] = complex<_Ty>(x * w, -y * w);
k = k-1;
}
for(i = 1; i <= k; i ++)
{
a[i] = a[i] - a[i - 1] * p;
a[i + 1] = a[i + 1] - a[i - 1] * q;
}
cx[k - 1] = complex<_Ty>(x * w, y * w);
k = k - 1;
if(k == 1)
cx[0] = complex<_Ty>(-a[1] * w / a[0], 0.0);
}
//牛顿下山法(NewtonHillDown)子函数
template <class _Ty, class _Tz>
inline void
gg90(valarray<_Tz> &cx, complex<_Ty> a[], _Ty& x, _Ty& y, _Ty& p, _Ty& q, _Ty& w, int &k)
{
int i;
double mo, sb, xb;
for (i = 1; i <= k; i ++)
{
xb = a[i].real() + a[i-1].real() * x - a[i - 1].imag() * y;
sb = a[i].imag() + a[i-1].real() * y + a[i - 1].imag() * x;
a[i] = complex<_Ty>(xb, sb);
}
cx[k - 1] = complex<_Ty>(x * w, y * w);
k --;
if(k == 1)
{
mo = Abs(a[0])*Abs(a[0]);
sb = -w * (a[0].real() * a[1].real() + a[0].imag() * a[1].imag()) / mo;
xb = w * (a[1].real() * a[0].imag() - a[0].real() * a[1].imag()) / mo;
cx[0] = complex<_Ty>(sb, xb);
}
return;
}
//牛顿下山法(NewtonHillDown)子函数
template <class _Ty>
inline void
g65(_Ty& x, _Ty& y, _Ty& x1, _Ty& y1, _Ty& dx, _Ty& dy, _Ty& dd, _Ty& dc, _Ty& c,
int& k, int& is, int& it)
{
if(it == 0)
{
is = 1;
dd = sqrt(dx * dx + dy * dy);
if(dd > 1.0) dd = 1.0;
dc = 6.28 / (4.5 * k);
c = 0.0;
}
while(true)
{
c += dc;
dx = dd * cos(c);
dy = dd * sin(c);
x1 = x + dx;
y1 = y + dy;
if(c <= 6.29)
{
it = 0;
return;
}
dd /= 1.67;
if(dd <= 1.0e-07)
{
it = 1;
return;
}
c = 0.0;
}
}
//梯度(Gradient)法(最速下降)求解非线性方程组一组实根
template <class _Ty>
inline int
RootGradient(_Ty eps, valarray<_Ty>& x, size_t js)
{
int r, j;
_Ty f, d, s;
int n = x.size(); //方程的个数,也是未知数的个数
std::valarray<_Ty> y(n); //定义一维数组对象y
r = js;
f = FunctionValueRG(x,y);
while(f>=eps)
{
r = r - 1;
if(r==0) return(js);
d = 0;
for(j=0; j<n; j++) d=d+y[j]*y[j];
if(FloatEqual(d,0)) return(-1);
s = f / d;
for(j=0; j<n; j++) x[j]=x[j]-s*y[j];
f=FunctionValueRG(x, y);
}
return(js-r);
}
//拟牛顿(QuasiNewton)法求解非线性方程组一组实根
template <class _Ty>
inline int
RootQuasiNewton(_Ty eps, _Ty t, _Ty h, valarray<_Ty>& x, int k)
{
int i, j, l;
_Ty am, z, beta, d;
int n = x.size(); //方程组中各方程个数,也是未知数个数
matrix<_Ty> a(n, n); //定义二维数组对象a
valarray<_Ty> b(n); //定义一维数组对象b
valarray<_Ty> y(n); //定义一维数组对象y
l = k;
am = 1.0 + eps;
while(am>=eps)
{
FunctionValueRSN(x, b);
am = 0.0;
for(i=0; i<n; i++)
{
z = Abs(b[i]);
if(z>am) am = z;
}
if(am>=eps)
{
l--;
if(l==0)
{
cout << "Fail!" << endl;
return(0);
}
for(j=0; j<n; j++)
{
z = x[j];
x[j] += h;
FunctionValueRSN(x, y);
for(i=0; i<n; i++)
a(i,j) = y[i];
x[j] = z;
}
if(LE_TotalChoiceGauss(a, b) == 0)
{
cout << "Fail!" << endl;
return(-1); //矩阵a奇异
}
beta = 1.0;
for(i=0; i<n; i++) beta -= b[i];
if(FloatEqual(beta,0))
{
cout << "Fail!" << endl;
return(-2); //beta=0
}
d = h / beta;
for(i=0; i<n; i++) x[i]=x[i]-d*b[i];
h = t * h;
}
}
return(k-l); //正常结束,返回迭代次数
}
//非线性方程组最小二乘解的广义逆法
template <class _Ty>
int RootLeastSquareGeneralizedInverse(int m, _Ty eps1, _Ty eps2, valarray<_Ty>& x, int ka)
{
int i, j, k, l, kk, jt;
bool yn;
_Ty y[10],b[10],alpha,z,h2,y1,y2,y3,y0,h1;
int n = x.size(); //非线性方程组中未知数个数
matrix<_Ty> p(m, n);
matrix<_Ty> pp(n, m);
matrix<_Ty> u(m, m);
matrix<_Ty> v(n, n);
valarray<_Ty> w(ka);
valarray<_Ty> d(m);
valarray<_Ty> dx(n);
l = 60;
alpha = 1.0;
while(l > 0)
{
FunctionValueRLSGI(x, d); //计算非线性方程组左边函数值
JacobiMatrix(x, p); //计算雅可比矩阵
//最小二乘的广义逆法求解线性方程组
jt = LE_LinearLeastSquareGeneralizedInverse(p, d, dx, pp, eps2, u, v);
if(jt < 0) return(jt);
j = 0;
jt = 1;
h2 = 0.0;
while(jt == 1)
{
jt = 0;
if(j < 3) z = alpha + 0.01 * j;
else z = h2;
for(i = 0; i < n; i++) w[i] = x[i] - z * dx[i];
FunctionValueRLSGI(w, d);
y1 = 0.0;
for(i = 0; i < m; i++) y1 = y1 + d[i] * d[i];
for(i = 0; i < n; i++) w[i] = x[i] - (z + 0.00001) * dx[i];
FunctionValueRLSGI(w, d);
y2 = 0.0;
for(i = 0; i < m; i++) y2 = y2 + d[i] * d[i];
y0 =(y2 - y1) / 0.00001;
if(Abs(y0) > 1.0e-10)
{
h1 = y0;
h2 = z;
if(j == 0)
{
y[0] = h1;
b[0] = h2;
}
else
{
y[j] = h1;
kk = k = 0;
while((kk == 0) && (k < j))
{
y3 = h2 - b[k];
yn = FloatEqual(y3, 0);
if(yn) kk = 1;
else h2 = (h1 - y[k]) / y3;
k++;
}
b[j] = h2;
if(kk != 0) b[j] = 1.0e+35;
h2 = 0.0;
for(k = j - 1; k >= 0; k--)
h2 = -y[k] / (b[k + 1] + h2);
h2 = h2 + b[0];
}
j++;
if(j <= 7) jt = 1;
else z = h2;
}
}
alpha = z;
y1 = y2 = 0.0;
for(i = 0; i <= n-1; i ++)
{
dx[i] = -alpha * dx[i];
x[i] = x[i] + dx[i];
y1 = y1 + Abs(dx[i]);
y2 = y2 + Abs(x[i]);
}
if(y1 < eps1 * y2) return(1);
l--;
}
return(0);
}
//蒙特卡洛(MonteCarlo)法求解f(x)=0的一个实根
//f(x)的自变量为与系数都为实数
template <class _Ty>
inline void
RootMonteCarloReal(_Ty& x, _Ty b, int m, _Ty eps)
{
// extern double mrnd1();
//extern double dmtclf();
//int k;
_Ty x1, y1;
_Ty a = b;
size_t k = 1;
double r = 1.0;
_Ty xx = x;
_Ty y = FunctionValueMCR(xx); //计算函数值
while(a>eps||FloatEqual(a,eps))
{
x1 = rand_01_One(r); //取随机数
x1 = -a + 2.0 * a * x1;
x1 = xx + x1;
y1 = FunctionValueMCR(x1); //计算函数值
k++;
if(Abs(y1)>Abs(y)||FloatEqual(Abs(y1),Abs(y)))
{
if(k>m)
{
k = 1;
a /= 2.0;
}
}
else
{
k = 1;
xx = x1;
y = y1;
if(Abs(y) < eps)
{
x=xx;
exit(0);
}
}
}
x = xx;
}
//蒙特卡洛(MonteCarlo)法求解f(x)=0的一个复根
//f(x)的自变量为复数,或自变量与系数都为复数(不能都为实数)
template <class _Tz, class _Ty>
inline void
RootMonteCarloComplex(_Tz& cxy, _Ty b, int m, _Ty eps)
{
size_t k = 1;
_Tz xxyy(cxy);
_Ty a = b;
double r(1);
_Ty z, z1;
z = FunctionModule(xxyy);
while(a > eps || FloatEqual(a,eps))
{
_Ty tempx = -a + 2.0 *a * rand_01_One(r);
_Ty tempy = -a + 2.0 *a * rand_01_One(r);
_Tz x1y1(tempx,tempy);
x1y1 += xxyy;
z1 = FunctionModule(x1y1);
k++;
if(z1 > z || FloatEqual(z1,z))
{
if(k > m)
{
k = 1;
a = a / 2.0;
}
}
else
{
k = 1;
xxyy = x1y1;
z = z1;
if(z < eps)
{
cxy = xxyy;
exit(0);
}
}
}
cxy = xxyy;
}
//蒙特卡洛(MonteCarlo)法求解f(x)=0的一组实根
//f(x)的自变量为与系数都为实数
template <class _Ty>
inline void
RootMonteCarloGroupReal(valarray<_Ty>& x, _Ty b, int m, _Ty eps)
{
_Ty a=b;
size_t k=1;
double r=1.0;
int n = x.size(); //方程个数,也是未知量的个数
valarray<_Ty> y(n);
_Ty z = FunctionModule(x);
while(a>eps||FloatEqual(a,eps))
{
for(size_t i = 0; i < n; i++)
y[i] = -a + 2.0 * a * rand_01_One(r) + x[i];
_Ty z1 = FunctionModule(y);
k++;
if(z1 > z || FloatEqual(z1,z))
{
if(k > m)
{
k = 1;
a = a / 2.0;
}
}
else
{
k = 1;
for(i = 0; i < n; i++) x[i] = y[i];
z = z1;
if(z < eps) exit(0);
}
}
}
#endif //_NONLINEAREQUATION_INL
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -