⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nonlinearequation.inl

📁 特征值和特征向量的计算,每种算法都用c++以函数形式实现
💻 INL
📖 第 1 页 / 共 2 页
字号:
                    {
						it = 0;
                        g65(x, y, x1, y1, dx, dy, dd, dc, c, k, is, it);
                        if(it == 0) goto zjn;
                    }
                    gg90(cx, a, x, y, p, q, w, k);
                }
            }
        }
        if(k == 1) jt = 0;
        else jt = 1;
    }
    return 1;
}

//牛顿下山法(NewtonHillDown)子函数
template <class _Ty>
inline void
g60(_Ty& t, _Ty& x, _Ty& y, _Ty& x1, _Ty& y1, _Ty& dx, _Ty& dy, 
	_Ty& p, _Ty& q, int& k, int& it)
{ 
	it = 1;
    while(it == 1)
    {
		t = t / 1.67;
		it = 0;
        x1 = x - t * dx;
        y1 = y - t * dy;
        if(k >= 50)
		{
			p = sqrt(x1 * x1 + y1 * y1);
            q = exp(85.0 / k);
            if(p >= q) it = 1;
        }
    }
}

//牛顿下山法(NewtonHillDown)子函数
template <class _Ty>
inline void
gg60(_Ty& t, _Ty& x, _Ty& y, _Ty& x1, _Ty& y1, _Ty& dx, _Ty& dy, 
	_Ty& p, _Ty& q, int& k, int& it)
{ 
	it = 1;
    while(it == 1)
    {
		t = t / 1.67;
		it = 0;
        x1 = x - t * dx;
        y1 = y - t * dy;
        if(k >= 30)
		{
			p = sqrt(x1 * x1 + y1 * y1);
            q = exp(75.0 / k);
            if(p >= q) it = 1;
        }
    }
	return;
}

//牛顿下山法(NewtonHillDown)子函数
template <class _Ty, class _Tz>
inline void
g90(valarray<_Tz> &cx, valarray<_Ty> &a, _Ty& x, _Ty& y, _Ty& p, _Ty& q, _Ty& w, int &k)
{
	int i;
    if(Abs(y) <= 1.0e-06)
    {
		p = -x;
		y = 0.0;
		q = 0.0;
	}
    else
    {
		p = -2.0 * x;
		q = x * x + y * y;
        cx[k - 1] = complex<_Ty>(x * w, -y * w);
        k = k-1;
    }
    for(i = 1; i <= k; i ++)
    {
		a[i] = a[i] - a[i - 1] * p;
        a[i + 1] = a[i + 1] - a[i - 1] * q;
    }
    cx[k - 1] = complex<_Ty>(x * w, y * w);
    k = k - 1;
    if(k == 1)
		cx[0] = complex<_Ty>(-a[1] * w / a[0], 0.0);
}

//牛顿下山法(NewtonHillDown)子函数
template <class _Ty, class _Tz>
inline void
gg90(valarray<_Tz> &cx, complex<_Ty> a[], _Ty& x, _Ty& y, _Ty& p, _Ty& q, _Ty& w, int &k)
{
	int i;
    double mo, sb, xb;    
	for (i = 1; i <= k; i ++)
	{ 
	  xb = a[i].real() + a[i-1].real() * x - a[i - 1].imag() * y;
	  sb = a[i].imag() + a[i-1].real() * y + a[i - 1].imag() * x;
	  a[i] = complex<_Ty>(xb, sb); 
	}
    
    cx[k - 1] = complex<_Ty>(x * w, y * w); 
	k --;
	if(k == 1)
	{
		mo = Abs(a[0])*Abs(a[0]);
		sb = -w * (a[0].real() * a[1].real() + a[0].imag() * a[1].imag()) / mo;
		xb =  w * (a[1].real() * a[0].imag() - a[0].real() * a[1].imag()) / mo;
		cx[0] = complex<_Ty>(sb, xb);		
	}
    return;
}

//牛顿下山法(NewtonHillDown)子函数
template <class _Ty>
inline void
g65(_Ty& x, _Ty& y, _Ty& x1, _Ty& y1, _Ty& dx, _Ty& dy, _Ty& dd, _Ty& dc, _Ty& c, 
	int& k, int& is, int& it)
{
	if(it == 0)
    {
		is = 1;
        dd = sqrt(dx * dx + dy * dy);
        if(dd > 1.0) dd = 1.0;
        dc = 6.28 / (4.5 * k);
		c = 0.0;
    }
    while(true)
    {
		c += dc;
        dx = dd * cos(c); 
		dy = dd * sin(c);
        x1 = x + dx; 
		y1 = y + dy;
        if(c <= 6.29)
        {
			it = 0;
			return;
		}
		dd /= 1.67;
		if(dd <= 1.0e-07)
		{
			it = 1;
			return;
		}
		c = 0.0;
	}
}

//梯度(Gradient)法(最速下降)求解非线性方程组一组实根
template <class _Ty>
inline int 
RootGradient(_Ty eps, valarray<_Ty>& x, size_t js)
{ 
    int r, j;
    _Ty f, d, s;
	
	int n = x.size();			//方程的个数,也是未知数的个数
	std::valarray<_Ty> y(n);	//定义一维数组对象y

    r = js;
    f = FunctionValueRG(x,y);
    while(f>=eps)
    {
		r = r - 1;
        if(r==0) return(js);

        d = 0;
        
		for(j=0; j<n; j++)	d=d+y[j]*y[j];

        if(FloatEqual(d,0)) return(-1);

        s = f / d;
        for(j=0; j<n; j++)	x[j]=x[j]-s*y[j];

        f=FunctionValueRG(x, y);
    }
    return(js-r);
}

//拟牛顿(QuasiNewton)法求解非线性方程组一组实根
template <class _Ty>
inline int 
RootQuasiNewton(_Ty eps, _Ty t, _Ty h, valarray<_Ty>& x, int k)
{
    int i, j, l;
    _Ty am, z, beta, d;
	
	int n = x.size();		//方程组中各方程个数,也是未知数个数
	
	matrix<_Ty> a(n, n);	//定义二维数组对象a
	valarray<_Ty> b(n);		//定义一维数组对象b
	valarray<_Ty> y(n);		//定义一维数组对象y
	    
	l = k;
	am = 1.0 + eps;
    while(am>=eps)
    {
		FunctionValueRSN(x, b);
        am = 0.0;
        for(i=0; i<n; i++)
        {
			z = Abs(b[i]);
            if(z>am) am = z;
        }
        if(am>=eps)
        {
			l--;
            if(l==0)
			{
				cout << "Fail!" << endl;
				return(0);
			}

            for(j=0; j<n; j++)
            {
				z = x[j];
				x[j] += h;
                FunctionValueRSN(x, y);
                for(i=0; i<n; i++) 
					a(i,j) = y[i];
                x[j] = z;
            }
			if(LE_TotalChoiceGauss(a, b) == 0)
			{
				cout << "Fail!" << endl;
				return(-1);					//矩阵a奇异
			}

            beta = 1.0;

            for(i=0; i<n; i++) beta -= b[i];
            
			if(FloatEqual(beta,0))
			{
				cout << "Fail!" << endl;
				return(-2);					//beta=0
			}

            d = h / beta;
            
			for(i=0; i<n; i++) x[i]=x[i]-d*b[i];

            h = t * h;
        }
    }
    return(k-l);					//正常结束,返回迭代次数
}

//非线性方程组最小二乘解的广义逆法
template <class _Ty>
int RootLeastSquareGeneralizedInverse(int m, _Ty eps1, _Ty eps2, valarray<_Ty>& x, int ka)
{
    int i, j, k, l, kk, jt;
	bool yn;
    _Ty y[10],b[10],alpha,z,h2,y1,y2,y3,y0,h1;
	
	int n = x.size();		//非线性方程组中未知数个数
    
	matrix<_Ty> p(m, n);
    matrix<_Ty> pp(n, m);
    matrix<_Ty> u(m, m);
    matrix<_Ty> v(n, n);

	valarray<_Ty> w(ka);
	valarray<_Ty> d(m);
	valarray<_Ty> dx(n);

    l = 60; 
	alpha = 1.0;

    while(l > 0)
	{
		FunctionValueRLSGI(x, d);	//计算非线性方程组左边函数值
        JacobiMatrix(x, p);			//计算雅可比矩阵
        
		//最小二乘的广义逆法求解线性方程组
		jt = LE_LinearLeastSquareGeneralizedInverse(p, d, dx, pp, eps2, u, v);

        if(jt < 0) return(jt);
        
		j = 0;
		jt = 1;
		h2 = 0.0;
        
		while(jt == 1)
		{
			jt = 0;
            
			if(j < 3) z = alpha + 0.01 * j;
            else z = h2;
            
			for(i = 0; i < n; i++) w[i] = x[i] - z * dx[i];
            
			FunctionValueRLSGI(w, d);
            y1 = 0.0;
            
			for(i = 0; i < m; i++) y1 = y1 + d[i] * d[i];
            for(i = 0; i < n; i++) w[i] = x[i] - (z + 0.00001) * dx[i];
            
			FunctionValueRLSGI(w, d);
            
			y2 = 0.0;
            for(i = 0; i < m; i++) y2 = y2 + d[i] * d[i];
            
			y0 =(y2 - y1) / 0.00001;
           
			if(Abs(y0) > 1.0e-10)
			{
				h1 = y0;
				h2 = z;
                
				if(j == 0)
				{ 
					y[0] = h1;
					b[0] = h2;
				}
                else
				{
					y[j] = h1;
					kk = k = 0;
					
                    while((kk == 0) && (k < j))
					{
						y3 = h2 - b[k];
						
						yn = FloatEqual(y3, 0);
						if(yn) kk = 1;
						else h2 = (h1 - y[k]) / y3;
						
						k++;
					}
                    
					b[j] = h2;
                    
					if(kk != 0) b[j] = 1.0e+35;
                    
					h2 = 0.0;
                    
					for(k = j - 1; k >= 0; k--)
						h2 = -y[k] / (b[k + 1] + h2);
                    h2 = h2 + b[0];
				}
                
				j++;
                
				if(j <= 7) jt = 1;
                else z = h2;
			}
		}
        
		alpha = z;
		y1 = y2 = 0.0;
       
		for(i = 0; i <= n-1; i ++)
		{
			dx[i] = -alpha * dx[i];
            x[i] = x[i] + dx[i];
            y1 = y1 + Abs(dx[i]);
            y2 = y2 + Abs(x[i]);
		}
        
		if(y1 < eps1 * y2)	return(1);

        l--;
	}

    return(0);
}

//蒙特卡洛(MonteCarlo)法求解f(x)=0的一个实根
//f(x)的自变量为与系数都为实数
template <class _Ty>
inline void 
RootMonteCarloReal(_Ty& x, _Ty b, int m, _Ty eps)
{
   // extern double mrnd1();
    //extern double dmtclf();
    //int k;
    _Ty x1, y1;
    _Ty a = b;
	size_t k = 1;
	double r = 1.0;
	_Ty xx = x;
	_Ty y = FunctionValueMCR(xx);	//计算函数值

    while(a>eps||FloatEqual(a,eps))
    {
		x1 = rand_01_One(r);		//取随机数
		x1 = -a + 2.0 * a * x1;
        x1 = xx + x1; 
		y1 = FunctionValueMCR(x1);	//计算函数值
        k++;
        if(Abs(y1)>Abs(y)||FloatEqual(Abs(y1),Abs(y)))
        {
			if(k>m)
			{
				k = 1; 
				a /= 2.0;
			}
		}
        else
        {
			k = 1;
			xx = x1;
			y = y1;
            if(Abs(y) < eps)
            {
				x=xx;
				exit(0);
			}
        }
    }
    x = xx;
}

//蒙特卡洛(MonteCarlo)法求解f(x)=0的一个复根
//f(x)的自变量为复数,或自变量与系数都为复数(不能都为实数)
template <class _Tz, class _Ty>
inline void 
RootMonteCarloComplex(_Tz& cxy, _Ty b, int m, _Ty eps)
{
    size_t k = 1;
	_Tz xxyy(cxy);
    _Ty a = b;
	double r(1);
	_Ty z, z1;

    z = FunctionModule(xxyy);

    while(a > eps || FloatEqual(a,eps))
    {
		_Ty tempx = -a + 2.0 *a * rand_01_One(r);
		_Ty tempy = -a + 2.0 *a * rand_01_One(r);

		_Tz x1y1(tempx,tempy);
		x1y1 += xxyy;

        z1 = FunctionModule(x1y1);
        
		k++;

        if(z1 > z || FloatEqual(z1,z))
        {
			if(k > m)
			{
				k = 1;
				a = a / 2.0;
			}
		}
        else
        {
			k = 1;
			xxyy = x1y1;
			z = z1;
            if(z < eps)
			{
				cxy = xxyy;
				exit(0);
			}
          }
      }
    cxy = xxyy;
}

//蒙特卡洛(MonteCarlo)法求解f(x)=0的一组实根
//f(x)的自变量为与系数都为实数
template <class _Ty>
inline void 
RootMonteCarloGroupReal(valarray<_Ty>& x, _Ty b, int m, _Ty eps)
{
    _Ty a=b;
	size_t k=1;
	double r=1.0;

	int n = x.size();		//方程个数,也是未知量的个数
	valarray<_Ty> y(n);

	_Ty z = FunctionModule(x);

    while(a>eps||FloatEqual(a,eps))
    {
		for(size_t i = 0; i < n; i++)
			y[i] = -a + 2.0 * a * rand_01_One(r) + x[i];

        _Ty z1 = FunctionModule(y);
        
		k++;

        if(z1 > z || FloatEqual(z1,z))
        {
			if(k > m)
			{
				k = 1;
				a = a / 2.0;
			}
		}
        else
        {
			k = 1; 

            for(i = 0; i < n; i++)	x[i] = y[i];

            z = z1;
            
			if(z < eps)	exit(0);
        }
    }
}

#endif //_NONLINEAREQUATION_INL

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -