📄 process.c
字号:
/* * linux/arch/ppc64/kernel/process.c * * Derived from "arch/i386/kernel/process.c" * Copyright (C) 1995 Linus Torvalds * * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and * Paul Mackerras (paulus@cs.anu.edu.au) * * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */#include <linux/config.h>#include <linux/errno.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/mm.h>#include <linux/smp.h>#include <linux/smp_lock.h>#include <linux/stddef.h>#include <linux/unistd.h>#include <linux/ptrace.h>#include <linux/slab.h>#include <linux/user.h>#include <linux/elf.h>#include <linux/init.h>#include <linux/init_task.h>#include <asm/pgtable.h>#include <asm/uaccess.h>#include <asm/system.h>#include <asm/io.h>#include <asm/processor.h>#include <asm/mmu.h>#include <asm/mmu_context.h>#include <asm/prom.h>#include <asm/ppcdebug.h>#include <asm/machdep.h>#include <asm/iSeries/HvCallHpt.h>#include <asm/Naca.h>#include "ppc_defs.h"int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs);struct task_struct *last_task_used_math = NULL;struct mm_struct ioremap_mm = { pgd : ioremap_dir ,page_table_lock : SPIN_LOCK_UNLOCKED };char *sysmap = NULL;unsigned long sysmap_size = 0;voidenable_kernel_fp(void){#ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) giveup_fpu(current); else giveup_fpu(NULL); /* just enables FP for kernel */#else giveup_fpu(last_task_used_math);#endif /* CONFIG_SMP */}intdump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs){ if (regs->msr & MSR_FP) giveup_fpu(current); memcpy(fpregs, ¤t->thread.fpr[0], sizeof(*fpregs)); return 1;}void_switch_to(struct task_struct *prev, struct task_struct *new){ struct thread_struct *new_thread, *old_thread; unsigned long flags;#ifdef CONFIG_SMP /* avoid complexity of lazy save/restore of fpu * by just saving it every time we switch out if * this task used the fpu during the last quantum. * * If it tries to use the fpu again, it'll trap and * reload its fp regs. So we don't have to do a restore * every switch, just a save. * -- Cort */ if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) giveup_fpu(prev);#endif /* CONFIG_SMP */ new_thread = &new->thread; old_thread = ¤t->thread; __save_and_cli(flags); _switch(old_thread, new_thread); __restore_flags(flags);}void show_regs(struct pt_regs * regs){ int i; printk("NIP: %016lX XER: %016lX LR: %016lX REGS: %p TRAP: %04lx %s\n", regs->nip, regs->xer, regs->link, regs,regs->trap, print_tainted()); printk("MSR: %016lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n", regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0, regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0, regs->msr&MSR_IR ? 1 : 0, regs->msr&MSR_DR ? 1 : 0); printk("TASK = %p[%d] '%s' ", current, current->pid, current->comm); printk("Last syscall: %ld ", current->thread.last_syscall); printk("\nlast math %p ", last_task_used_math); #ifdef CONFIG_SMP /* printk(" CPU: %d last CPU: %d", current->processor,current->last_processor); */#endif /* CONFIG_SMP */ printk("\n"); for (i = 0; i < 32; i++) { long r; if ((i % 4) == 0) { printk("GPR%02d: ", i); } if ( __get_user(r, &(regs->gpr[i])) ) return; printk("%016lX ", r); if ((i % 4) == 3) { printk("\n"); } }}void exit_thread(void){ if (last_task_used_math == current) last_task_used_math = NULL;}void flush_thread(void){ if (last_task_used_math == current) last_task_used_math = NULL;}voidrelease_thread(struct task_struct *t){}/* * Copy a thread.. */intcopy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct *p, struct pt_regs *regs){ struct pt_regs *childregs, *kregs; extern void ret_from_fork(void); unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE; /* Copy registers */ sp -= sizeof(struct pt_regs); childregs = (struct pt_regs *) sp; *childregs = *regs; if ((childregs->msr & MSR_PR) == 0) { /* for kernel thread, set `current' and stackptr in new task */ childregs->gpr[1] = sp + sizeof(struct pt_regs); childregs->gpr[13] = (unsigned long) p; p->thread.regs = NULL; /* no user register state */ clear_ti_thread_flag(p->thread_info, TIF_32BIT);#ifdef CONFIG_PPC_ISERIES set_ti_thread_flag(p->thread_info, TIF_RUN_LIGHT);#endif } else p->thread.regs = childregs; childregs->gpr[3] = 0; /* Result from fork() */ sp -= STACK_FRAME_OVERHEAD; /* * The way this works is that at some point in the future * some task will call _switch to switch to the new task. * That will pop off the stack frame created below and start * the new task running at ret_from_fork. The new task will * do some house keeping and then return from the fork or clone * system call, using the stack frame created above. */ sp -= sizeof(struct pt_regs); kregs = (struct pt_regs *) sp; sp -= STACK_FRAME_OVERHEAD; p->thread.ksp = sp; /* * The PPC64 ABI makes use of a TOC to contain function * pointers. The function (ret_from_except) is actually a pointer * to the TOC entry. The first entry is a pointer to the actual * function. */ kregs->nip = *((unsigned long *)ret_from_fork); /* * copy fpu info - assume lazy fpu switch now always * -- Cort */ if (regs->msr & MSR_FP) { giveup_fpu(current); childregs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); } memcpy(&p->thread.fpr, ¤t->thread.fpr, sizeof(p->thread.fpr)); p->thread.fpscr = current->thread.fpscr; p->thread.last_syscall = -1; return 0;}/* * Set up a thread for executing a new program */void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp){ /* NIP is *really* a pointer to the function descriptor for * the elf _start routine. The first entry in the function * descriptor is the entry address of _start and the second * entry is the TOC value we need to use. */ unsigned long *entry = (unsigned long *)nip; unsigned long *toc = entry + 1; set_fs(USER_DS); memset(regs->gpr, 0, sizeof(regs->gpr)); memset(®s->ctr, 0, 4 * sizeof(regs->ctr)); __get_user(regs->nip, entry); regs->gpr[1] = sp; __get_user(regs->gpr[2], toc); regs->msr = MSR_USER64; if (last_task_used_math == current) last_task_used_math = 0; current->thread.fpscr = 0;}int sys_clone(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs){ return do_fork(p1, regs->gpr[1], regs, 0);}int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs){ return do_fork(SIGCHLD, regs->gpr[1], regs, 0);}int sys_vfork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs){ return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0);}int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, struct pt_regs *regs){ int error; char * filename; filename = getname((char *) a0); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; if (regs->msr & MSR_FP) giveup_fpu(current); error = do_execve(filename, (char **) a1, (char **) a2, regs); if (error == 0) current->ptrace &= ~PT_DTRACE; putname(filename);out: return error;}void initialize_paca_hardware_interrupt_stack(void){ extern struct Naca *naca; int i; unsigned long stack; unsigned long end_of_stack =0; for (i=1; i < naca->processorCount; i++) { /* Carve out storage for the hardware interrupt stack */ stack = __get_free_pages(GFP_KERNEL, get_order(8*PAGE_SIZE)); if ( !stack ) { printk("ERROR, cannot find space for hardware stack.\n"); panic(" no hardware stack "); } /* Store the stack value in the PACA for the processor */ xPaca[i].xHrdIntStack = stack + (8*PAGE_SIZE) - STACK_FRAME_OVERHEAD; xPaca[i].xHrdIntCount = 0; } /* * __get_free_pages() might give us a page > KERNBASE+256M which * is mapped with large ptes so we can't set up the guard page. */ if (__is_processor(PV_POWER4)) return; for (i=0; i < naca->processorCount; i++) { /* set page at the top of stack to be protected - prevent overflow */ end_of_stack = xPaca[i].xHrdIntStack - (8*PAGE_SIZE - STACK_FRAME_OVERHEAD); ppc_md.hpte_updateboltedpp(PP_RXRX,end_of_stack); }}extern char _stext[], _etext[];char * ppc_find_proc_name( unsigned * p, char * buf, unsigned buflen ){ unsigned long tb_flags; unsigned short name_len; unsigned long tb_start, code_start, code_ptr, code_offset; unsigned code_len; strcpy( buf, "Unknown" ); code_ptr = (unsigned long)p; code_offset = 0; if ( ( (unsigned long)p >= (unsigned long)_stext ) && ( (unsigned long)p <= (unsigned long)_etext ) ) { while ( (unsigned long)p <= (unsigned long)_etext ) { if ( *p == 0 ) { tb_start = (unsigned long)p; ++p; /* Point to traceback flags */ tb_flags = *((unsigned long *)p); p += 2; /* Skip over traceback flags */ if ( tb_flags & TB_NAME_PRESENT ) { if ( tb_flags & TB_PARMINFO ) ++p; /* skip over parminfo data */ if ( tb_flags & TB_HAS_TBOFF ) { code_len = *p; /* get code length */ code_start = tb_start - code_len; code_offset = code_ptr - code_start + 1; if ( code_offset > 0x100000 ) break; ++p; /* skip over code size */ } name_len = *((unsigned short *)p); if ( name_len > (buflen-20) ) name_len = buflen-20; memcpy( buf, ((char *)p)+2, name_len ); buf[name_len] = 0; if ( code_offset ) sprintf( buf+name_len, "+0x%lx", code_offset-1 ); } break; } ++p; } } return buf;}voidprint_backtrace(unsigned long *sp){ int cnt = 0; unsigned long i; char name_buf[256]; printk("Call backtrace: \n"); while (sp) { if (__get_user( i, &sp[2] )) break; printk("%016lX ", i); printk("%s\n", ppc_find_proc_name( (unsigned *)i, name_buf, 256 )); if (cnt > 32) break; if (__get_user(sp, (unsigned long **)sp)) break; } printk("\n");}/* * These bracket the sleeping functions.. */extern void scheduling_functions_start_here(void);extern void scheduling_functions_end_here(void);#define first_sched (*(unsigned long *)scheduling_functions_start_here)#define last_sched (*(unsigned long *)scheduling_functions_end_here)unsigned long get_wchan(struct task_struct *p){ unsigned long ip, sp; unsigned long stack_page = (unsigned long)p->thread_info; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; sp = p->thread.ksp; do { sp = *(unsigned long *)sp; if (sp < (stack_page + sizeof(struct thread_struct)) || sp >= (stack_page + THREAD_SIZE)) return 0; if (count > 0) { ip = *(unsigned long *)(sp + 16); if (ip < first_sched || ip >= last_sched) return (ip & 0xFFFFFFFF); } } while (count++ < 16); return 0;}void show_trace_task(struct task_struct *p){ unsigned long ip, sp; unsigned long stack_page = (unsigned long)p->thread_info; int count = 0; if (!p) return; printk("Call Trace: "); sp = p->thread.ksp; do { sp = *(unsigned long *)sp; if (sp < (stack_page + sizeof(struct thread_struct)) || sp >= (stack_page + THREAD_SIZE)) break; if (count > 0) { ip = *(unsigned long *)(sp + 16); printk("[%016lx] ", ip); } } while (count++ < 16); printk("\n");}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -