📄 proc-xscale.s
字号:
/* * cpu_xscale_icache_invalidate_page(page) * * invalidate all Icache lines associated with this area of memory * * page: page to invalidate */ .align 5ENTRY(cpu_xscale_icache_invalidate_page) mov r1, #PAGESIZE1: mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE subs r1, r1, #4 * CACHELINESIZE bne 1b mcr p15, 0, r0, c7, c5, 6 @ Invalidate BTB mov pc, lr/* ================================ CACHE LOCKING============================ * * The XScale MicroArchitecture implements support for locking entries into * the data and instruction cache. The following functions implement the core * low level instructions needed to accomplish the locking. The developer's * manual states that the code that performs the locking must be in non-cached * memory. To accomplish this, the code in xscale-cache-lock.c copies the * following functions from the cache into a non-cached memory region that * is allocated through consistent_alloc(). * */ .align 5/* * xscale_icache_lock * * r0: starting address to lock * r1: end address to lock */ENTRY(xscale_icache_lock)iLockLoop: bic r0, r0, #CACHELINESIZE - 1 mcr p15, 0, r0, c9, c1, 0 @ lock into cache cmp r0, r1 @ are we done? add r0, r0, #CACHELINESIZE @ advance to next cache line bls iLockLoop mov pc, lr/* * xscale_icache_unlock */ENTRY(xscale_icache_unlock) mcr p15, 0, r0, c9, c1, 1 @ Unlock icache mov pc, lr/* * xscale_dcache_lock * * r0: starting address to lock * r1: end address to lock */ENTRY(xscale_dcache_lock) mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov r2, #1 mcr p15, 0, r2, c9, c2, 0 @ Put dcache in lock mode cpwait ip @ Wait for completion mrs r2, cpsr orr r3, r2, #PSR_F_BIT | PSR_I_BITdLockLoop: msr cpsr_c, r3 mcr p15, 0, r0, c7, c10, 1 @ Write back line if it is dirty mcr p15, 0, r0, c7, c6, 1 @ Flush/invalidate line msr cpsr_c, r2 ldr ip, [r0], #CACHELINESIZE @ Preload 32 bytes into cache from @ location [r0]. Post-increment @ r3 to next cache line cmp r0, r1 @ Are we done? bls dLockLoop mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov r2, #0 mcr p15, 0, r2, c9, c2, 0 @ Get out of lock mode cpwait_ret lr, ip/* * xscale_dcache_unlock */ENTRY(xscale_dcache_unlock) mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mcr p15, 0, ip, c9, c2, 1 @ Unlock cache mov pc, lr/* * Needed to determine the length of the code that needs to be copied. */ .align 5ENTRY(xscale_cache_dummy) mov pc, lr/* ================================ TLB LOCKING============================== * * The XScale MicroArchitecture implements support for locking entries into * the Instruction and Data TLBs. The following functions provide the * low level support for supporting these under Linux. xscale-lock.c * implements some higher level management code. Most of the following * is taken straight out of the Developer's Manual. *//* * Lock I-TLB entry * * r0: Virtual address to translate and lock */ .align 5ENTRY(xscale_itlb_lock) mrs r2, cpsr orr r3, r2, #PSR_F_BIT | PSR_I_BIT msr cpsr_c, r3 @ Disable interrupts mcr p15, 0, r0, c8, c5, 1 @ Invalidate I-TLB entry mcr p15, 0, r0, c10, c4, 0 @ Translate and lock msr cpsr_c, r2 @ Restore interrupts cpwait_ret lr, ip/* * Lock D-TLB entry * * r0: Virtual address to translate and lock */ .align 5ENTRY(xscale_dtlb_lock) mrs r2, cpsr orr r3, r2, #PSR_F_BIT | PSR_I_BIT msr cpsr_c, r3 @ Disable interrupts mcr p15, 0, r0, c8, c6, 1 @ Invalidate D-TLB entry mcr p15, 0, r0, c10, c8, 0 @ Translate and lock msr cpsr_c, r2 @ Restore interrupts cpwait_ret lr, ip/* * Unlock all I-TLB entries */ .align 5ENTRY(xscale_itlb_unlock) mcr p15, 0, ip, c10, c4, 1 @ Unlock I-TLB mcr p15, 0, ip, c8, c5, 0 @ Invalidate I-TLB cpwait_ret lr, ip/* * Unlock all D-TLB entries */ENTRY(xscale_dtlb_unlock) mcr p15, 0, ip, c10, c8, 1 @ Unlock D-TBL mcr p15, 0, ip, c8, c6, 0 @ Invalidate D-TLB cpwait_ret lr, ip/* =============================== PageTable ============================== */#define PMD_CACHE_WRITE_ALLOCATE 0#define PTE_CACHE_WRITE_ALLOCATE 0/* * cpu_xscale_set_pgd(pgd) * * Set the translation base pointer to be as described by pgd. * * pgd: new page tables */ .align 5ENTRY(cpu_xscale_set_pgd) clean_d_cache r1, r2 mcr p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mcr p15, 0, r0, c2, c0, 0 @ load page table pointer mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs cpwait_ret lr, ip/* * cpu_xscale_set_pmd(pmdp, pmd) * * Set a level 1 translation table entry, and clean it out of * any caches such that the MMUs can load it correctly. * * pmdp: pointer to PMD entry * pmd: PMD value to store */ .align 5ENTRY(cpu_xscale_set_pmd)#if PMD_CACHE_WRITE_ALLOCATE and r2, r1, #PMD_TYPE_MASK|PMD_SECT_CACHEABLE|PMD_SECT_BUFFERABLE cmp r2, #PMD_TYPE_SECT|PMD_SECT_CACHEABLE|PMD_SECT_BUFFERABLE orreq r1, r1, #PMD_SECT_TEX(1)#endif str r1, [r0] mov ip, #0 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr/* * cpu_xscale_set_pte(ptep, pte) * * Set a PTE and flush it out * * Errata 40: must set memory to write-through for user read-only pages. */ .align 5ENTRY(cpu_xscale_set_pte) tst r0, #2048 streq r0, [r0, -r0] @ BUG_ON str r1, [r0], #-2048 @ linux version bic r2, r1, #0xff0 orr r2, r2, #PTE_TYPE_EXT @ extended page eor r3, r1, #L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_WRITE | L_PTE_DIRTY tst r3, #L_PTE_USER | L_PTE_EXEC @ User or Exec? orrne r2, r2, #PTE_EXT_AP_URO_SRW @ yes -> user r/o, system r/w tst r3, #L_PTE_WRITE | L_PTE_DIRTY @ Write and Dirty? orreq r2, r2, #PTE_EXT_AP_UNO_SRW @ yes -> user n/a, system r/w @ combined with user -> user r/w @ @ Handle the X bit. We want to set this bit for the minicache @ (U = E = B = W = 0, C = 1) or when write allocate is enabled, @ and we have a writeable, cacheable region. If we ignore the @ U and E bits, we can allow user space to use the minicache as @ well. @ @ X = (C & ~W & ~B) | (C & W & B & write_allocate) @ eor ip, r1, #L_PTE_CACHEABLE tst ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE#if PTE_CACHE_WRITE_ALLOCATE eorne ip, r1, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE tstne ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE#endif orreq r2, r2, #PTE_EXT_TEX(1) @ @ Erratum 40: The B bit must be cleared for a user read-only @ cacheable page. @ @ B = B & ~((U|E) & C & ~W) @ and ip, r1, #L_PTE_USER | L_PTE_EXEC | L_PTE_WRITE | L_PTE_CACHEABLE teq ip, #L_PTE_USER | L_PTE_CACHEABLE teqne ip, #L_PTE_EXEC | L_PTE_CACHEABLE teqne ip, #L_PTE_USER | L_PTE_EXEC | L_PTE_CACHEABLE biceq r2, r2, #PTE_BUFFERABLE tst r3, #L_PTE_PRESENT | L_PTE_YOUNG @ Present and Young? movne r2, #0 @ no -> fault str r2, [r0] @ hardware version mov ip, #0 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr .ltorgcpu_manu_name: .asciz "Intel"cpu_80200_name: .asciz "XScale-80200"cpu_pxa250_name: .asciz "XScale-PXA250" .align .section ".text.init", #alloc, #execinstr__xscale_setup: mov r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE msr cpsr_c, r0 mcr p15, 0, ip, c7, c7, 0 @ invalidate I, D caches & BTB mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mcr p15, 0, ip, c8, c7, 0 @ invalidate I, D TLBs mcr p15, 0, r4, c2, c0, 0 @ load page table pointer mov r0, #0x1f @ Domains 0, 1 = client mcr p15, 0, r0, c3, c0, 0 @ load domain access register mrc p15, 0, r0, c1, c0, 0 @ get control register bic r0, r0, #0x0200 @ .... ..R. .... .... bic r0, r0, #0x0082 @ .... .... B... ..A. orr r0, r0, #0x0005 @ .... .... .... .C.M orr r0, r0, #0x3900 @ ..VI Z..S .... .... mov pc, lr .text/* * Purpose : Function pointers used to access above functions - all calls * come through these */ .type xscale_processor_functions, #objectENTRY(xscale_processor_functions) .word v4t_early_abort .word cpu_xscale_check_bugs .word cpu_xscale_proc_init .word cpu_xscale_proc_fin .word cpu_xscale_reset .word cpu_xscale_do_idle /* cache */ .word cpu_xscale_cache_clean_invalidate_all .word cpu_xscale_cache_clean_invalidate_range .word cpu_xscale_flush_ram_page /* dcache */ .word cpu_xscale_dcache_invalidate_range .word cpu_xscale_dcache_clean_range .word cpu_xscale_dcache_clean_page .word cpu_xscale_dcache_clean_entry /* icache */ .word cpu_xscale_icache_invalidate_range .word cpu_xscale_icache_invalidate_page /* pgtable */ .word cpu_xscale_set_pgd .word cpu_xscale_set_pmd .word cpu_xscale_set_pte .size xscale_processor_functions, . - xscale_processor_functions .type cpu_80200_info, #objectcpu_80200_info: .long cpu_manu_name .long cpu_80200_name .size cpu_80200_info, . - cpu_80200_info .type cpu_pxa250_info, #objectcpu_pxa250_info: .long cpu_manu_name .long cpu_pxa250_name .size cpu_pxa250_info, . - cpu_pxa250_info .type cpu_arch_name, #objectcpu_arch_name: .asciz "armv5" .size cpu_arch_name, . - cpu_arch_name .type cpu_elf_name, #objectcpu_elf_name: .asciz "v5" .size cpu_elf_name, . - cpu_elf_name .align .section ".proc.info", #alloc, #execinstr .type __80200_proc_info,#object__80200_proc_info: .long 0x69052000 .long 0xfffffff0 .long 0x00000c0e b __xscale_setup .long cpu_arch_name .long cpu_elf_name .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP .long cpu_80200_info .long xscale_processor_functions .long v4wbi_tlb_fns .long v5te_mc_user_fns .size __80200_proc_info, . - __80200_proc_info .type __pxa250_proc_info,#object__pxa250_proc_info: .long 0x69052100 .long 0xfffff7f0 .long 0x00000c0e b __xscale_setup .long cpu_arch_name .long cpu_elf_name .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP .long cpu_pxa250_info .long xscale_processor_functions .long v4wbi_tlb_fns .long v5te_mc_user_fns .size __pxa250_proc_info, . - __pxa250_proc_info
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -