⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bin2_tree.h

📁 A Library of Efficient Data Types and Algorithms,封装了常用的ADT及其相关算法的软件包
💻 H
字号:
/*******************************************************************************++  LEDA 4.5  +++  bin2_tree.h+++  Copyright (c) 1995-2004+  by Algorithmic Solutions Software GmbH+  All rights reserved.+ *******************************************************************************/// $Revision: 1.3 $  $Date: 2004/02/06 11:18:50 $#ifndef LEDA_BIN_TREE_H#define LEDA_BIN_TREE_H#if !defined(LEDA_ROOT_INCL_ID)#define LEDA_ROOT_INCL_ID 350980#include <LEDA/PREAMBLE.h>#endif#include <LEDA/basic.h>LEDA_BEGIN_NAMESPACE class bin_tree;class bin_tree_node;typedef bin_tree_node* bin_tree_item;typedef void (*DRAW_BIN_NODE_FCT)(bin_tree_node*,double,double);typedef void (*DRAW_BIN_EDGE_FCT)(double,double,double,double);enum { LEDA_BIN_TREE=0, LEDA_AVL_TREE=1, LEDA_BB_TREE=2, LEDA_RB_TREE=3,        LEDA_RS_TREE=4, LEDA_NUM_TREES=5 };//------------------------------------------------------------------------------// class bin_tree_node //------------------------------------------------------------------------------class __exportC bin_tree_node{     friend class __exportC bin_tree;   friend class __exportC avl_tree;   friend class __exportC bb_tree;   friend class __exportC rb_tree;   friend class __exportC rs_tree;   GenPtr   k;              // key   GenPtr   i;              // info   bin_tree_node* child[2]; // node: left and right child                            // leaf: successor and predecessor   bin_tree_node* parent;   // pointer to parent   int   bal;               // rebalancing data    bin_tree_node(GenPtr key, GenPtr inf, int b)   { k = key;     i = inf;      bal = b;    }            bin_tree_node() { }            bin_tree_node(bin_tree_node* p)   { k = p->k;     i = p->i ;     bal = p->bal;    }            void set_bal(int x) { bal = x; }   public:   int    get_bal() { return bal; }   GenPtr get_key() { return k; }   LEDA_MEMORY(bin_tree_node)}; //------------------------------------------------------------------------------// class bin_tree//------------------------------------------------------------------------------class __exportC bin_tree{   protected:  enum { left=0, right=1 };  bin_tree_node ROOT;       // "super root" to avoid special cases in rotations                            // ROOT.child[left] points to real root node                            // ROOT.child[right] points to leftmost leaf  int count;              // functions depending on used rebalancing method  // will be defined in derived classes (rb_tree, avl_tree, ...)  virtual int node_balance() { return 0; }  // default balance for nodes  virtual int root_balance() { return 0; }  // root node  virtual void insert_rebal(bin_tree_node*)   {}  virtual void del_rebal(bin_tree_node*, bin_tree_node*) {}public:  bin_tree_node* get_root() const { return ROOT.child[left]; }  bin_tree_node* get_min()  const { return ROOT.child[right]; }protected:  void set_root(bin_tree_node* p) { ROOT.child[left] = p;  }  void set_min(bin_tree_node* p)  { ROOT.child[right] = p; }  void rotation(bin_tree_node*, bin_tree_node*, int);  void double_rotation(bin_tree_node*, bin_tree_node*, bin_tree_node*, int);  void del_tree(bin_tree_node*);  bin_tree_node* search(GenPtr) const;  bin_tree_node* copy_tree(bin_tree_node*,bin_tree_item&) const;  // functions depending on actual key type  // will be defined in dictionary and sortseq templates  virtual int  cmp(GenPtr x, GenPtr y) const                                         { return compare((long)x,(long)y); }  virtual int  key_type_id()      const { return UNKNOWN_TYPE_ID; }  virtual void clear_key(GenPtr&) const { }  virtual void clear_inf(GenPtr&) const { }  virtual void copy_key(GenPtr&)  const { }  virtual void copy_inf(GenPtr&)  const { }  virtual void print_key(GenPtr)  const { }  virtual void print_inf(GenPtr)  const { }public:  void* owner; // pointer to data type object (e.h. sortseq)  virtual int         tree_type() const { return LEDA_BIN_TREE; }  virtual const char* tree_name() const { return "Binary Tree"; }  typedef bin_tree_node* item;  bin_tree_node* min() const { return get_min(); }  bin_tree_node* max() const { return (count>0) ? get_min()->child[left] : 0; }  bin_tree_node* insert(GenPtr,GenPtr);  bin_tree_node* insert_at_item(bin_tree_node*,GenPtr,GenPtr,GenPtr=0);  bin_tree_node* lookup(GenPtr) const;  bin_tree_node* locate(GenPtr) const;  bin_tree_node* locate(GenPtr,bool&) const;  bin_tree_node* locate_succ(GenPtr) const;   bin_tree_node* locate_pred(GenPtr) const;   const GenPtr&  key(bin_tree_node* p)  const { return  p->k; }  GenPtr&        inf(bin_tree_node* p)  const { return  p->i; }  void del(GenPtr);  void del_item(bin_tree_node* p);  void change_inf(bin_tree_node*,GenPtr);  void clear();  int  size()   const { return count; }   bool empty()  const { return get_root() ? false : true ; }// set operations  void add(const bin_tree&);  void intersect_with(const bin_tree&);  void subtract(const bin_tree&);  //void symdiff(const bin_tree&);  bool contains(const bin_tree& T) const;  // construction, assignment, destruction  bin_tree() {  count = 0; set_root(nil); set_min(nil); }  bin_tree(const bin_tree&);  bin_tree& operator=(const bin_tree&);  virtual ~bin_tree() { clear(); }  // miscellaneous  bool is_root(bin_tree_node* p) const { return p == get_root(); }  int  get_bal(bin_tree_node* p) const { return p->get_bal(); }  bin_tree_node*  get_last_node() { return last_inner_node; }  void draw(DRAW_BIN_NODE_FCT, DRAW_BIN_EDGE_FCT,             bin_tree_node*, double, double, double, double, double);  void draw(DRAW_BIN_NODE_FCT, DRAW_BIN_EDGE_FCT,             double, double, double, double);  void print() const;  void print_tree(bin_tree_node*,int) const;  friend ostream& operator<<(ostream& out, const bin_tree&) { return out; }  friend istream& operator>>(istream& in, bin_tree&) { return in; }};inline void bin_tree::rotation(bin_tree_node* p,bin_tree_node* q, int dir){ bin_tree_node* r = q->child[1-dir];  bin_tree_node* x = p->parent;  p->child[dir] = r;  q->child[1-dir] = p;  p->parent = q;  r->parent = p;  if (p == x->child[left])     x->child[left] = q;  else     x->child[right] = q;  q->parent = x;  propagate_modification(4,p,r);  propagate_modification(5,q,p);  if( x!=&ROOT )    propagate_modification(6,x,q); }inline void bin_tree::double_rotation(bin_tree_node* p, bin_tree_node* q,                                       bin_tree_node* r, int dir1){ int dir2 = 1-dir1;  bin_tree_node* s = r->child[dir1];  bin_tree_node* t = r->child[dir2];  bin_tree_node* x = p->parent;  p->child[dir1] = t;  q->child[dir2] = s;  r->child[dir1] = q;  r->child[dir2] = p;  p->parent = r;  q->parent = r;  s->parent = q;  t->parent = p;  if (p == x->child[left])     x->child[left] = r;  else     x->child[right] = r;  r->parent = x;  propagate_modification(7,p,t);  propagate_modification(8,q,s);  propagate_modification(9,r,p);  propagate_modification(10,r,q);  if( x!=&ROOT )    propagate_modification(11,x,r);}LEDA_END_NAMESPACE#if LEDA_ROOT_INCL_ID == 350980#undef LEDA_ROOT_INCL_ID#include <LEDA/POSTAMBLE.h>#endif#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -