⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 householder.c

📁 The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers.
💻 C
字号:
/* linalg/householder.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_linalg.h>doublegsl_linalg_householder_transform (gsl_vector * v){  /* replace v[0:n-1] with a householder vector (v[0:n-1]) and     coefficient tau that annihilate v[1:n-1] */  const size_t n = v->size ;  if (n == 1)    {      return 0.0; /* tau = 0 */    }  else    {       double alpha, beta, tau ;            gsl_vector_view x = gsl_vector_subvector (v, 1, n - 1) ;             double xnorm = gsl_blas_dnrm2 (&x.vector);            if (xnorm == 0)         {          return 0.0; /* tau = 0 */        }            alpha = gsl_vector_get (v, 0) ;      beta = - (alpha >= 0.0 ? +1.0 : -1.0) * hypot(alpha, xnorm) ;      tau = (beta - alpha) / beta ;            gsl_blas_dscal (1.0 / (alpha - beta), &x.vector);      gsl_vector_set (v, 0, beta) ;            return tau;    }}intgsl_linalg_householder_hm (double tau, const gsl_vector * v, gsl_matrix * A){  /* applies a householder transformation v,tau to matrix m */  size_t i, j;  if (tau == 0.0)    {      return GSL_SUCCESS;    }  for (j = 0; j < A->size2; j++)    {      /* Compute wj = Akj vk */      double wj = gsl_matrix_get(A,0,j);        for (i = 1; i < A->size1; i++)  /* note, computed for v(0) = 1 above */        {          wj += gsl_matrix_get(A,i,j) * gsl_vector_get(v,i);        }      /* Aij = Aij - tau vi wj */      /* i = 0 */      {        double A0j = gsl_matrix_get (A, 0, j);        gsl_matrix_set (A, 0, j, A0j - tau *  wj);      }      /* i = 1 .. M-1 */      for (i = 1; i < A->size1; i++)        {          double Aij = gsl_matrix_get (A, i, j);          double vi = gsl_vector_get (v, i);          gsl_matrix_set (A, i, j, Aij - tau * vi * wj);        }    }  return GSL_SUCCESS;}intgsl_linalg_householder_mh (double tau, const gsl_vector * v, gsl_matrix * A){  /* applies a householder transformation v,tau to matrix m from the     right hand side in order to zero out rows */  size_t i, j;  if (tau == 0)    return GSL_SUCCESS;  /* A = A - tau w v' */  for (i = 0; i < A->size1; i++)    {      double wi = gsl_matrix_get(A,i,0);        for (j = 1; j < A->size2; j++)  /* note, computed for v(0) = 1 above */        {          wi += gsl_matrix_get(A,i,j) * gsl_vector_get(v,j);        }            /* j = 0 */            {        double Ai0 = gsl_matrix_get (A, i, 0);        gsl_matrix_set (A, i, 0, Ai0 - tau *  wi);      }      /* j = 1 .. N-1 */            for (j = 1; j < A->size2; j++)         {          double vj = gsl_vector_get (v, j);          double Aij = gsl_matrix_get (A, i, j);          gsl_matrix_set (A, i, j, Aij - tau * wi * vj);        }    }  return GSL_SUCCESS;}intgsl_linalg_householder_hv (double tau, const gsl_vector * v, gsl_vector * w){  /* applies a householder transformation v to vector w */  const size_t N = v->size;   if (tau == 0)    return GSL_SUCCESS ;  {    /* compute d = v'w */    double d0 = gsl_vector_get(w,0);    double d1, d;    gsl_vector_const_view v1 = gsl_vector_const_subvector(v, 1, N-1);    gsl_vector_view w1 = gsl_vector_subvector(w, 1, N-1);    gsl_blas_ddot (&v1.vector, &w1.vector, &d1);        d = d0 + d1;    /* compute w = w - tau (v) (v'w) */      {      double w0 = gsl_vector_get (w,0);      gsl_vector_set (w, 0, w0 - tau * d);    }        gsl_blas_daxpy (-tau * d, &v1.vector, &w1.vector);  }    return GSL_SUCCESS;}intgsl_linalg_householder_hm1 (double tau, gsl_matrix * A){  /* applies a householder transformation v,tau to a matrix being     build up from the identity matrix, using the first column of A as     a householder vector */  size_t i, j;  if (tau == 0)    {      gsl_matrix_set (A, 0, 0, 1.0);            for (j = 1; j < A->size2; j++)        {          gsl_matrix_set (A, 0, j, 0.0);        }      for (i = 1; i < A->size1; i++)        {          gsl_matrix_set (A, i, 0, 0.0);        }      return GSL_SUCCESS;    }  /* w = A' v */  for (j = 1; j < A->size2; j++)    {      double wj = 0.0;   /* A0j * v0 */      for (i = 1; i < A->size1; i++)        {          double vi = gsl_matrix_get(A, i, 0);          wj += gsl_matrix_get(A,i,j) * vi;        }      /* A = A - tau v w' */      gsl_matrix_set (A, 0, j, - tau *  wj);            for (i = 1; i < A->size1; i++)        {          double vi = gsl_matrix_get (A, i, 0);          double Aij = gsl_matrix_get (A, i, j);          gsl_matrix_set (A, i, j, Aij - tau * vi * wj);        }    }  for (i = 1; i < A->size1; i++)    {      double vi = gsl_matrix_get(A, i, 0);      gsl_matrix_set(A, i, 0, -tau * vi);    }  gsl_matrix_set (A, 0, 0, 1.0 - tau);  return GSL_SUCCESS;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -