📄 householder.c
字号:
/* linalg/householder.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_linalg.h>doublegsl_linalg_householder_transform (gsl_vector * v){ /* replace v[0:n-1] with a householder vector (v[0:n-1]) and coefficient tau that annihilate v[1:n-1] */ const size_t n = v->size ; if (n == 1) { return 0.0; /* tau = 0 */ } else { double alpha, beta, tau ; gsl_vector_view x = gsl_vector_subvector (v, 1, n - 1) ; double xnorm = gsl_blas_dnrm2 (&x.vector); if (xnorm == 0) { return 0.0; /* tau = 0 */ } alpha = gsl_vector_get (v, 0) ; beta = - (alpha >= 0.0 ? +1.0 : -1.0) * hypot(alpha, xnorm) ; tau = (beta - alpha) / beta ; gsl_blas_dscal (1.0 / (alpha - beta), &x.vector); gsl_vector_set (v, 0, beta) ; return tau; }}intgsl_linalg_householder_hm (double tau, const gsl_vector * v, gsl_matrix * A){ /* applies a householder transformation v,tau to matrix m */ size_t i, j; if (tau == 0.0) { return GSL_SUCCESS; } for (j = 0; j < A->size2; j++) { /* Compute wj = Akj vk */ double wj = gsl_matrix_get(A,0,j); for (i = 1; i < A->size1; i++) /* note, computed for v(0) = 1 above */ { wj += gsl_matrix_get(A,i,j) * gsl_vector_get(v,i); } /* Aij = Aij - tau vi wj */ /* i = 0 */ { double A0j = gsl_matrix_get (A, 0, j); gsl_matrix_set (A, 0, j, A0j - tau * wj); } /* i = 1 .. M-1 */ for (i = 1; i < A->size1; i++) { double Aij = gsl_matrix_get (A, i, j); double vi = gsl_vector_get (v, i); gsl_matrix_set (A, i, j, Aij - tau * vi * wj); } } return GSL_SUCCESS;}intgsl_linalg_householder_mh (double tau, const gsl_vector * v, gsl_matrix * A){ /* applies a householder transformation v,tau to matrix m from the right hand side in order to zero out rows */ size_t i, j; if (tau == 0) return GSL_SUCCESS; /* A = A - tau w v' */ for (i = 0; i < A->size1; i++) { double wi = gsl_matrix_get(A,i,0); for (j = 1; j < A->size2; j++) /* note, computed for v(0) = 1 above */ { wi += gsl_matrix_get(A,i,j) * gsl_vector_get(v,j); } /* j = 0 */ { double Ai0 = gsl_matrix_get (A, i, 0); gsl_matrix_set (A, i, 0, Ai0 - tau * wi); } /* j = 1 .. N-1 */ for (j = 1; j < A->size2; j++) { double vj = gsl_vector_get (v, j); double Aij = gsl_matrix_get (A, i, j); gsl_matrix_set (A, i, j, Aij - tau * wi * vj); } } return GSL_SUCCESS;}intgsl_linalg_householder_hv (double tau, const gsl_vector * v, gsl_vector * w){ /* applies a householder transformation v to vector w */ const size_t N = v->size; if (tau == 0) return GSL_SUCCESS ; { /* compute d = v'w */ double d0 = gsl_vector_get(w,0); double d1, d; gsl_vector_const_view v1 = gsl_vector_const_subvector(v, 1, N-1); gsl_vector_view w1 = gsl_vector_subvector(w, 1, N-1); gsl_blas_ddot (&v1.vector, &w1.vector, &d1); d = d0 + d1; /* compute w = w - tau (v) (v'w) */ { double w0 = gsl_vector_get (w,0); gsl_vector_set (w, 0, w0 - tau * d); } gsl_blas_daxpy (-tau * d, &v1.vector, &w1.vector); } return GSL_SUCCESS;}intgsl_linalg_householder_hm1 (double tau, gsl_matrix * A){ /* applies a householder transformation v,tau to a matrix being build up from the identity matrix, using the first column of A as a householder vector */ size_t i, j; if (tau == 0) { gsl_matrix_set (A, 0, 0, 1.0); for (j = 1; j < A->size2; j++) { gsl_matrix_set (A, 0, j, 0.0); } for (i = 1; i < A->size1; i++) { gsl_matrix_set (A, i, 0, 0.0); } return GSL_SUCCESS; } /* w = A' v */ for (j = 1; j < A->size2; j++) { double wj = 0.0; /* A0j * v0 */ for (i = 1; i < A->size1; i++) { double vi = gsl_matrix_get(A, i, 0); wj += gsl_matrix_get(A,i,j) * vi; } /* A = A - tau v w' */ gsl_matrix_set (A, 0, j, - tau * wj); for (i = 1; i < A->size1; i++) { double vi = gsl_matrix_get (A, i, 0); double Aij = gsl_matrix_get (A, i, j); gsl_matrix_set (A, i, j, Aij - tau * vi * wj); } } for (i = 1; i < A->size1; i++) { double vi = gsl_matrix_get(A, i, 0); gsl_matrix_set(A, i, 0, -tau * vi); } gsl_matrix_set (A, 0, 0, 1.0 - tau); return GSL_SUCCESS;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -