⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 steffenson.c

📁 The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers.
💻 C
字号:
/* roots/steffenson.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Reid Priedhorsky, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* steffenson.c -- steffenson root finding algorithm    This is Newton's method with an Aitken "delta-squared"   acceleration of the iterates. This can improve the convergence on   multiple roots where the ordinary Newton algorithm is slow.   x[i+1] = x[i] - f(x[i]) / f'(x[i])   x_accelerated[i] = x[i] - (x[i+1] - x[i])**2 / (x[i+2] - 2*x[i+1] + x[i])   We can only use the accelerated estimate after three iterations,   and use the unaccelerated value until then. */#include <config.h>#include <stddef.h>#include <stdlib.h>#include <stdio.h>#include <math.h>#include <float.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_roots.h>#include "roots.h"typedef struct  {    double f, df;    double x;    double x_1;    double x_2;    int count;  }steffenson_state_t;static int steffenson_init (void * vstate, gsl_function_fdf * fdf, double * root);static int steffenson_iterate (void * vstate, gsl_function_fdf * fdf, double * root);static intsteffenson_init (void * vstate, gsl_function_fdf * fdf, double * root){  steffenson_state_t * state = (steffenson_state_t *) vstate;  const double x = *root ;  state->f = GSL_FN_FDF_EVAL_F (fdf, x);  state->df = GSL_FN_FDF_EVAL_DF (fdf, x) ;  state->x = x;  state->x_1 = 0.0;  state->x_2 = 0.0;  state->count = 1;  return GSL_SUCCESS;}static intsteffenson_iterate (void * vstate, gsl_function_fdf * fdf, double * root){  steffenson_state_t * state = (steffenson_state_t *) vstate;    double x_new, f_new, df_new;  double x_1 = state->x_1 ;  double x = state->x ;  if (state->df == 0.0)    {      GSL_ERROR("derivative is zero", GSL_EZERODIV);    }  x_new = x - (state->f / state->df);    GSL_FN_FDF_EVAL_F_DF(fdf, x_new, &f_new, &df_new);  state->x_2 = x_1 ;  state->x_1 = x ;  state->x = x_new;  state->f = f_new ;  state->df = df_new ;  if (!finite (f_new))    {      GSL_ERROR ("function not continuous", GSL_EBADFUNC);    }  if (state->count < 3)    {      *root = x_new ;      state->count++ ;    }  else     {      double u = (x - x_1) ;      double v = (x_new - 2 * x + x_1);      if (v == 0)        *root = x_new;  /* avoid division by zero */      else        *root = x_1 - u * u / v ;  /* accelerated value */    }  if (!finite (df_new))    {      GSL_ERROR ("function not differentiable", GSL_EBADFUNC);    }        return GSL_SUCCESS;}static const gsl_root_fdfsolver_type steffenson_type ={"steffenson",                          /* name */ sizeof (steffenson_state_t), &steffenson_init, &steffenson_iterate};const gsl_root_fdfsolver_type  * gsl_root_fdfsolver_steffenson = &steffenson_type;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -