📄 math.cpp
字号:
// Math.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include "stdio.h"
#include "math.h"
#define ABS(x) (x)>0?(x):-(x)
#define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
void mult(double **a,double *x,double *y,int n)
//矩阵与向量相乘
{
int i,j;
for(i=0;i<n;i++)
{
y[i]=0;
for(j=0;j<n;j++)
y[i]+=a[i][j]*x[j];
}
}
void gauss(double **a,int n)
{
int i,j,k,ik;
double mik,temp;
for(k=0;k<n;k++)
{
mik=-1;
for(i=k;i<n;i++)
if(ABS(a[i][k])>mik)
{
mik=ABS(a[i][k]);
ik=i;
}
for(j=k;j<n;j++)
SWAP(a[ik][j],a[k][j]);
for(i=n-1;i>=k;i--)
a[k][i]/=a[k][k];
for(i=k+1;i<n;i++)
{
for(j=n-1;j>=k;j--)
a[i][j]-=a[i][k]*a[k][j];
}
}
}
void gauss(double **a,double *b,double *x,int n)
//高斯列主元消去法求解线性方程组
{
int i,j,k,ik;
double mik,temp;
for(k=0;k<n;k++)
{
mik=-1;
for(i=k;i<n;i++)
if(ABS(a[i][k])>mik)
{
mik=ABS(a[i][k]);
ik=i;
}
for(j=k;j<n;j++)
SWAP(a[ik][j],a[k][j]);
SWAP(b[k],b[ik]);
b[k]/=a[k][k];
for(i=n-1;i>=k;i--)
a[k][i]/=a[k][k];
for(i=k+1;i<n;i++)
{
b[i]-=a[i][k]*b[k];
for(j=n-1;j>=k;j--)
a[i][j]-=a[i][k]*a[k][j];
}
}
for(i=n-1;i>=0;i--)
{
x[i]=b[i];
for(j=i+1;j<n;j++)
x[i]-=a[i][j]*x[j];
}
}
void jacobi(double **a,double *b,double *x,int n,int Times)
//雅可比迭代求线性方程组
{
int i,j,t;
double *xx=new double[n];
for(t=0;t<Times;t++)
{
for(i=0;i<n;i++)
{
xx[i]=b[i];
for(j=0;j<n;j++)
if(j!=i)
xx[i]-=a[i][j]*x[j];
xx[i]/=a[i][i];
}
for(i=0;i<n;i++)
x[i]=xx[i];
}
delete xx;
}
void gs(double **a,double *b,double *x,int n,int Times)
//高斯-赛德尔迭代法求解线性方程组
{
int i,j,t;
for(t=0;t<Times;t++)
{
for(i=0;i<n;i++)
{
x[i]=b[i];
for(j=0;j<n;j++)
if(j!=i)
x[i]-=a[i][j]*x[j];
x[i]/=a[i][i];
}
}
}
void doolittle_deco(double **a,int n)
//Doolittle三角分解,分解后的矩阵保存在a中
{
int i,j,k,m;
for(k=0;k<n;k++)
{
for(j=k;j<n;j++)
for(m=0;m<k;m++)
a[k][j]-=a[k][m]*a[m][j];
for(i=k+1;i<n;i++)
{
for(m=0;m<k;m++)
a[i][k]-=a[i][m]*a[m][k];
a[i][k]/=a[k][k];
}
}
}
void doolittle_back(double **a,double *b,double *x,int n)
//Doolittle三角分解法求解线性方程组的回代过程
{
int i,j;
double *y;
y=new double[n];
for(i=0;i<n;i++)
{
y[i]=b[i];
for(j=0;j<i;j++)
y[i]-=a[i][j]*y[j];
}
for(i=n-1;i>=0;i--)
{
x[i]=y[i];
for(j=i+1;j<n;j++)
x[i]-=a[i][j]*x[j];
x[i]/=a[i][i];
}
delete y;
}
void doolittle(double **a,double *b,double *x,int n)
//Doolittle三角分解法求解线性方程组
{
doolittle_deco(a,n);
doolittle_back(a,b,x,n);
}
void reverse(double **a,double **r,int n)
//矩阵求逆
{
int i,j;
double *b,*x;
b=new double[n];
x=new double[n];
doolittle_deco(a,n);
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
b[j]=0;
b[i]=1;
doolittle_back(a,b,x,n);
for(j=0;j<n;j++)
r[j][i]=x[j];
}
delete b,x;
}
void linear(double **x,double *y,double *beta,int n,int p)
//最小二乘法多元回归
{
double **a,*b;
int i,j,k;
a=new double*[p];
for(i=0;i<p;i++)
a[i]=new double[p];
for(i=0;i<p;i++)
for(j=0;j<p;j++)
{
a[i][j]=0;
for(k=0;k<n;k++)
a[i][j]+=x[k][i]*x[k][j];
}
b=new double[p];
for(i=0;i<p;i++)
{
b[i]=0;
for(j=0;j<n;j++)
b[i]+=x[j][i]*y[j];
}
gauss(a,b,beta,p);
for(i=0;i<p;i++)
delete a[i];
delete a,b;
}
void polyfit(double *x,double *y,double *beta,int n,int p)
//一元多项式拟合
{
int i,j;
double **xx;
xx=new double*[n];
for(i=0;i<n;i++)
{
xx[i]=new double[p];
for(j=0;j<p;j++)
xx[i][j]=pow(x[i],j);
}
linear(xx,y,beta,n,p);
for(i=0;i<n;i++)
delete xx[i];
delete xx;
}
void polyfitw(double *x,double *y,double *w,double *beta,int n,int p)
//一元多项式加权拟合
{
int i,j;
double **xx;
xx=new double*[n];
for(i=0;i<n;i++)
{
w[i]=sqrt(w[i]);
xx[i]=new double[p];
for(j=0;j<p;j++)
xx[i][j]=pow(x[i],j)*w[i];
y[i]*=w[i];
}
linear(xx,y,beta,n,p);
for(i=0;i<n;i++)
delete xx[i];
delete xx;
}
void cholesky(double **a,double **L,int n)
//Cholesky分解,得到的L是下三角矩阵
{
int k,i,m;
for(k=0;k<n;k++)
{
L[k][k]=a[k][k];
for(m=0;m<k;m++)
L[k][k]-=L[k][m]*L[k][m];
L[k][k]=sqrt(L[k][k]);
for(i=k+1;i<n;i++)
{
L[i][k]=a[i][k];
for(m=0;m<k;m++)
L[i][k]-=L[i][m]*L[k][m];
L[i][k]/=L[k][k];
}
}
for(i=0;i<n;i++)
for(m=i+1;m<n;m++)
L[i][m]=0;
}
void reverse_L(double **L,double **R,int n)
{
int i,k,m;
for(k=0;k<n;k++)
{
R[k][k]=1/L[k][k];
for(i=k-1;i>=0;i--)
{
R[k][i]=0;
for(m=i+1;m<=k;m++)
R[k][i]-=R[k][m]*L[m][i];
R[k][i]/=L[i][i];
}
}
for(i=0;i<n;i++)
for(m=i+1;m<n;m++)
R[i][m]=0;
}
void conjugate(double **a,double *b,double *x,int n,double eps)
{
double *p,*r,alfa,beta,*ap,temp;
p=new double[n];
r=new double[n];
ap=new double[n];
int i,j,t;
for(i=0;i<n;i++)
{
p[i]=b[i];
for(j=0;j<n;j++)
p[i]-=a[i][j]*x[j];
r[i]=p[i];
}
for(t=0;t<3;t++)
{
for(temp=0,i=0;i<n;i++)
temp+=r[i]>0?r[i]:-r[i];
if(temp<eps)
{
printf("Times:%d\n",t);
break;
}
for(i=0;i<n;i++)
{
ap[i]=0;
for(j=0;j<n;j++)
ap[i]+=a[i][j]*p[j];
}
for(alfa=0,i=0;i<n;i++)
alfa+=r[i]*p[i];
for(temp=0,i=0;i<n;i++)
temp+=ap[i]*p[i];
alfa/=temp;
for(i=0;i<n;i++)
x[i]+=alfa*p[i];
for(i=0;i<n;i++)
{
r[i]=b[i];
for(j=0;j<n;j++)
r[i]-=a[i][j]*x[j];
}
for(beta=0,i=0;i<n;i++)
beta-=r[i]*ap[i];
beta/=temp;
for(i=0;i<n;i++)
p[i]=r[i]+beta*p[i];
}
}
int main(int argc, char* argv[])
{
int i,j,n;
double **a,*b,*x;
FILE *fp=fopen("d:\\data.txt","r");
fscanf(fp,"%d",&n);
a=new double*[n];
b=new double[n];
x=new double[n];
for(i=0;i<n;i++)
{
a[i]=new double[n];
for(j=0;j<n;j++)
fscanf(fp,"%lf",a[i]+j);
fscanf(fp,"%lf",b+i);
}
fclose(fp);
gauss(a,b,x,n);//Gauss主元消去法
for(i=0;i<n;i++)
printf("%f\t",x[i]);
printf("\n");
for(i=0;i<n;i++)
x[i]=1;
jacobi(a,b,x,3,10);//Jacobi迭代法
for(i=0;i<n;i++)
printf("%f\t",x[i]);
printf("\n");
for(i=0;i<n;i++)
x[i]=1;
gs(a,b,x,n,10);//GS迭代法
for(i=0;i<n;i++)
printf("%f\t",x[i]);
printf("\n");
doolittle(a,b,x,n);//Doolittle三角分解
for(i=0;i<n;i++)
printf("%f\t",x[i]);
printf("\n");
for(i=0;i<n;i++)
x[i]=0;
conjugate(a,b,x,n,1e-2);//共轭梯度法
for(i=0;i<n;i++)
printf("%f\t",x[i]);
printf("\n");
for(i=0;i<n;i++)
delete a[i];
delete a,b,x;
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -