⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 libasm.s

📁 <B>Digital的Unix操作系统VAX 4.2源码</B>
💻 S
字号:
#ident "$Header: libasm.s,v 1.1 87/08/18 16:23:56 mdove Exp $"/*		4.2	libasm.s * * Copyright 1985 by MIPS Computer Systems, Inc. * * libasm.s -- standalone libc'ish assembler code * * Revision History: * * Oct 09, 1990 - Joe Szczypek * 	Removed unused code to make space in bootblks. *	Made bcopy and bzero builable in two forms, small *	and large, to save space in bootblks. */#include "../../machine/mips/regdef.h"#include "../../machine/mips/cpu.h"#include "../../machine/mips/cpu_board.h"#include "../../machine/mips/asm.h"	BSS(_icache_size, 4)		# bytes of icache	BSS(_dcache_size, 4)		# bytes of dcache#define	NBPW	4/* * bcopy(src, dst, bcount) * * NOTE: the optimal copy here is somewhat different than for the user-level * equivalents (bcopy in 4.2, memcpy in V), because: * 1) it frequently acts on uncached data, especially since copying from * (uncached) disk buffers into user pgms is high runner. * This means one must be careful with lwl/lwr/lb - don't expect cache help. * 2) the distribution of usage is very different: there are a large number * of bcopies for small, aligned structures (like for ioctl, for example), * a reasonable number of randomly-sized copies for user I/O, and many * bcopies of large (page-size) blocks for stdio; the latter must be * well-tuned, hence the use of 32-byte loops. * 3) this is much more frequently-used code inside the kernel than outside * * Overall copy-loop speeds, by amount of loop-unrolling: assumptions: * a) low icache miss rate (this code gets used a bunch) * b) large transfers, especially, will be word-alignable. * c) Copying speeds (steady state, 0% I-cache-miss, 100% D-cache Miss): * d) 100% D-Cache Miss (but cacheable, so that lwl/lwr/lb work well) *	Config	Bytes/	Cycles/	Speed (VAX/780 = 1) *		Loop	Word *	08V11	1	35	0.71X	(8MHz, VME, 1-Deep WB, 1-way ILV) *		4	15	1.67X *		8/16	13.5	1.85X *		32/up	13.25	1.89X *	08MM44	1	26	0.96X	(8MHz, MEM, 4-Deep WB, 4-way ILV) *		4	9	2.78X *		8	7.5	3.33X *		16	6.75	3.70X *		32	6.375	3.92X	(diminishing returns thereafter) * * MINCOPY is minimum number of byte that its worthwhile to try and * align copy into word transactions.  Calculations below are for 8 bytes: * Estimating MINCOPY (C = Cacheable, NC = Noncacheable): * Assumes 100% D-cache miss on first reference, then 0% (100%) for C (NC): * (Warning: these are gross numbers, and the code has changed slightly): *	Case		08V11			08M44 *	MINCOPY		C	NC		C	NC *	9 (1 byte loop)	75	133		57	93 *	8 (complex logic) *	Aligned		51	51		40	40 *	Alignable, *	worst (1+4+3)	69	96		53	80 *	Unalignable	66	93		60	72 * MINCOPY should be lower for lower cache miss rates, lower cache miss * penalties, better alignment properties, or if src and dst alias in * cache. For this particular case, it seems very important to minimize the * number of lb/sb pairs: a) frequent non-cacheable references are used, * b) when i-cache miss rate approaches zero, even the 4-deep WB can't * put successive sb's together in any useful way, so few references are saved. * To summarize, even as low as 8 bytes, avoiding the single-byte loop seems * worthwhile; some assumptions are probably optimistic, so there is not quite * as much disadvantage.  However, the optimal number is almost certainly in * the range 7-12. * *	a0	src addr *	a1	dst addr *	a2	length remaining */#define	MINCOPY	8LEAF(bcopy)#ifdef SECONDARY	xor	v0,a0,a1		# bash src & dst for align chk; BDSLOT	blt	a2,MINCOPY,bytecopy	# too short, just byte copy	and	v0,NBPW-1		# low-order bits for align chk	subu	v1,zero,a0		# -src; BDSLOT	bne	v0,zero,unaligncopy	# src and dst not alignable/* * src and dst can be simultaneously word aligned */	and	v1,NBPW-1		# number of bytes til aligned	subu	a2,v1			# bcount -= alignment	beq	v1,zero,blkcopy		# already aligned#ifdef MIPSEB	lwl	v0,0(a0)		# copy unaligned portion	swl	v0,0(a1)#endif#ifdef MIPSEL	lwr	v0,0(a0)	swr	v0,0(a1)#endif	addu	a0,v1			# src += alignment	addu	a1,v1			# dst += alignment/* * 32 byte block, aligned copy loop (for big reads/writes) */blkcopy:	and	a3,a2,~31		# total space in 32 byte chunks	subu	a2,a3			# count after by-32 byte loop done	beq	a3,zero,wordcopy	# less than 32 bytes to copy	addu	a3,a0			# source endpoint1:	lw	v0,0(a0)	lw	v1,4(a0)	lw	t0,8(a0)	lw	t1,12(a0)	sw	v0,0(a1)	sw	v1,4(a1)	sw	t0,8(a1)	sw	t1,12(a1)	addu	a0,32			# src+= 32; here to ease loop end	lw	v0,-16(a0)	lw	v1,-12(a0)	lw	t0,-8(a0)	lw	t1,-4(a0)	sw	v0,16(a1)	sw	v1,20(a1)	sw	t0,24(a1)	sw	t1,28(a1)	addu	a1,32			# dst+= 32; fills BD slot	bne	a0,a3,1b/* * word copy loop */wordcopy:	and	a3,a2,~(NBPW-1)		# word chunks	subu	a2,a3			# count after by word loop	beq	a3,zero,bytecopy	# less than a word to copy	addu	a3,a0			# source endpoint1:	lw	v0,0(a0)	addu	a0,NBPW	sw	v0,0(a1)	addu	a1,NBPW			# dst += 4; BD slot	bne	a0,a3,1b	b	bytecopy/* * deal with simultaneously unalignable copy by aligning dst */unaligncopy:	subu	a3,zero,a1		# calc byte cnt to get dst aligned	and	a3,NBPW-1		# alignment = 0..3	subu	a2,a3			# bcount -= alignment	beq	a3,zero,partaligncopy	# already aligned#ifdef MIPSEB	lwl	v0,0(a0)		# get whole word	lwr	v0,3(a0)		# for sure	swl	v0,0(a1)		# store left piece (1-3 bytes)#endif#ifdef MIPSEL	lwr	v0,0(a0)		# get whole word	lwl	v0,3(a0)		# for sure	swr	v0,0(a1)		# store right piece (1-3 bytes)#endif	addu	a0,a3			# src += alignment (will fill LD slot)	addu	a1,a3			# dst += alignment/* * src unaligned, dst aligned loop * NOTE: if MINCOPY >= 7, will always do 1 loop iteration or more * if we get here at all */partaligncopy:	and	a3,a2,~(NBPW-1)		# space in word chunks	subu	a2,a3			# count after by word loop#if MINCOPY < 7	beq	a3,zero,bytecopy	# less than a word to copy#endif	addu	a3,a0			# source endpoint1:#ifdef MIPSEB	lwl	v0,0(a0)	lwr	v0,3(a0)#endif#ifdef MIPSEL	lwr	v0,0(a0)	lwl	v0,3(a0)#endif	addu	a0,NBPW	sw	v0,0(a1)	addu	a1,NBPW	bne	a0,a3,1b/* * brute force byte copy loop, for bcount < MINCOPY + tail of unaligned dst * note that lwl, lwr, swr CANNOT be used for tail, since the lwr might * cross page boundary and give spurious address exception */bytecopy:#endif SECONDARY	addu	a3,a2,a0		# source endpoint; BDSLOT	ble	a2,zero,copydone	# nothing left to copy, or bad length1:	lb	v0,0(a0)	addu	a0,1	sb	v0,0(a1)	addu	a1,1			# BDSLOT: incr dst address	bne	a0,a3,1bcopydone:	j	ra	END(bcopy)/* * bzero(dst, bcount) * Zero block of memory * * Calculating MINZERO, assuming 50% cache-miss on non-loop code: * Overhead =~ 18 instructions => 63 (81) cycles * Byte zero =~ 16 (24) cycles/word for 08M44 (08V11) * Word zero =~ 3 (6) cycles/word for 08M44 (08V11) * If I-cache-miss nears 0, MINZERO ==> 4 bytes; otherwise, times are: * breakeven (MEM) = 63 / (16 - 3) =~ 5 words * breakeven (VME) = 81 / (24 - 6)  =~ 4.5 words * Since the overhead is pessimistic (worst-case alignment), and many calls * will be for well-aligned data, and since Word-zeroing at least leaves * the zero in the cache, we shade these values (18-20) down to 12 */#define	MINZERO	12LEAF(bzero)#ifdef SECONDARY	subu	v1,zero,a0		# number of bytes til aligned	blt	a1,MINZERO,bytezero	and	v1,NBPW-1	subu	a1,v1	beq	v1,zero,blkzero		# already aligned#ifdef MIPSEB	swl	zero,0(a0)#endif#ifdef	MIPSEL	swr	zero,0(a0)#endif	addu	a0,v1/* * zero 32 byte, aligned block */blkzero:	and	a3,a1,~31		# 32 byte chunks	subu	a1,a3	beq	a3,zero,wordzero	addu	a3,a0			# dst endpoint1:	sw	zero,0(a0)	sw	zero,4(a0)	sw	zero,8(a0)	sw	zero,12(a0)	addu	a0,32	sw	zero,-16(a0)	sw	zero,-12(a0)	sw	zero,-8(a0)	sw	zero,-4(a0)	bne	a0,a3,1bwordzero:	and	a3,a1,~(NBPW-1)		# word chunks	subu	a1,a3	beq	a3,zero,bytezero	addu	a3,a0			# dst endpoint1:	addu	a0,NBPW	sw	zero,-NBPW(a0)	bne	a0,a3,1bbytezero:#endif SECONDARY	ble	a1,zero,zerodone	addu	a1,a0			# dst endpoint1:	addu	a0,1	sb	zero,-1(a0)	bne	a0,a1,1bzerodone:	j	ra	END(bzero)/* * _cksum1(addr, len, prevcksum) * * Calculates a 16 bit ones-complement checksum. * Note that for a big-endian machine, this routine always adds even * address bytes to the high order 8 bits of the 16 bit checksum and * odd address bytes are added to the low order 8 bits of the 16 bit checksum. * For little-endian machines, this routine always adds even address bytes * to the low order 8 bits of the 16 bit checksum and the odd address bytes * to the high order 8 bits of the 16 bit checksum. */LEAF(_cksum1)	move	v0,a2		# copy previous checksum	beq	a1,zero,4f	# count exhausted	and	v1,a0,1	beq	v1,zero,2f	# already on a halfword boundry	lbu	t8,0(a0)	addu	a0,1#ifdef MIPSEL	sll	t8,8#endif MIPSEL	addu	v0,t8	subu	a1,1	b	2f1:	lhu	t8,0(a0)	addu	a0,2	addu	v0,t8	subu	a1,22:	bge	a1,2,1b	beq	a1,zero,3f	# no trailing byte	lbu	t8,0(a0)#ifdef MIPSEB	sll	t8,8#endif MIPSEB	addu	v0,t83:	srl	v1,v0,16	# add in all previous wrap around carries	and	v0,0xffff	addu	v0,v1	srl	v1,v0,16	# wrap-arounds could cause carry, also	addu	v0,v1	and	v0,0xffff4:	j	ra	END(_cksum1)/* * nuxi_s and nuxi_l -- byte swap short and long */LEAF(nuxi_s)			# a0 = ??ab	srl	v0,a0,8		# v0 = 0??a	and	v0,0xff		# v0 = 000a	sll	v1,a0,8		# v1 = ?ab0	or	v0,v1		# v0 = ?aba	and	v0,0xffff	# v0 = 00ba	j	ra	END(nuxi_s)LEAF(nuxi_l)			# a0 = abcd	sll	v0,a0,24	# v0 = d000	srl	v1,a0,24	# v1 = 000a	or	v0,v0,v1	# v0 = d00a	and	v1,a0,0xff00	# v1 = 00c0	sll	v1,v1,8		# v1 = 0c00	or	v0,v0,v1	# v0 = dc0a	srl	v1,a0,8		# v1 = 0abc	and	v1,a0,0xff00	# v1 = 00b0	or	v0,v0,v1	# v0 = dcba	j	ra	END(nuxi_l)/* * clearseg(dst_ppn) * *	Performance *	Config	Cycles/	Speed vs VAX *		4K Page	 *	08V11	6,144	1.09X *	08M44	1,229	5.46X	(could be made faster by unroll to 64) */#define	PGSHIFT	12#define	NBPG	(4*1024)LEAF(clearpage)	addu	t0,a0,NBPG-32		# dst on last pass of loop1:	sw	zero,0(a0)	sw	zero,4(a0)	sw	zero,8(a0)	sw	zero,12(a0)	sw	zero,16(a0)	sw	zero,20(a0)	sw	zero,24(a0)	sw	zero,28(a0)	.set	noreorder	bne	a0,t0,1b	addu	a0,32			# BDSLOT: inc dst, NOTE after test	.set	reorder	j	ra	END(clearpage)/* * wbflush() -- spin until write buffer empty */LEAF(wbflush)	sw	zero,wbflush_tmp	lw	zero,wbflush_tmp	j	ra	END(wbflush)	LBSS(wbflush_tmp, 4)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -