⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gamma.c

📁 <B>Digital的Unix操作系统VAX 4.2源码</B>
💻 C
字号:
/*	@(#)gamma.c	1.14	*//*LINTLIBRARY*//* *	gamma returns the log of the absolute value of the gamma function *	of its double-precision argument. *	The sign of the gamma function is returned in the *	external integer signgam. *	Returns EDOM error and value HUGE if argument is non-negative integer. *	Returns ERANGE error and value HUGE if the correct value would overflow. * *	The coefficients for expansion around zero *	are #5243 from Hart & Cheney; for expansion *	around infinity they are #5404. * *	Calls log and sin. */#include <math.h>#include <values.h>#include <errno.h>#define X_MAX	(3.0 * H_PREC)#define GOOBIE	0.9189385332046727417803297int signgam;doublegamma(x)register double x;{	extern double pos_gamma();	struct exception exc;	exc.type = 0;	exc.name = "gamma";	exc.arg1 = x;	exc.retval = HUGE;	signgam = 1;	if (x > 0)		x = pos_gamma(x, &exc);	else {		static double pi = M_PI;		double temp; /* can't be in register because of modf() below */		if (!modf(x = -x, &temp)) { /* SING if x is negative integer */			exc.type = SING;			if (!matherr(&exc)) {				(void) write(2, "gamma: SING error\n", 18);				errno = EDOM;			}			return (exc.retval);		}		if (x >= X_MAX)			exc.type = OVERFLOW;		else {			if ((temp = sin(pi * x)) < 0)				temp = -temp;			else				signgam = -1;			return (-(log(x * temp/pi) + pos_gamma(x, &exc)));		}	}	if (exc.type != OVERFLOW)		return (x);	if (!matherr(&exc))		errno = ERANGE;	return (exc.retval);}static doublepos_gamma(x, excp)register double x;struct exception *excp;{	static double p2[] = {		-0.67449507245925289918e1,		-0.50108693752970953015e2,		-0.43933044406002567613e3,		-0.20085274013072791214e4,		-0.87627102978521489560e4,		-0.20886861789269887364e5,		-0.42353689509744089647e5,	}, q2[] = {		 1.0,		-0.23081551524580124562e2,		 0.18949823415702801641e3,		-0.49902852662143904834e3,		-0.15286072737795220248e4,		 0.99403074150827709015e4,		-0.29803853309256649932e4,		-0.42353689509744090010e5,	};	register double y, z;	if (x > 8) { /* asymptotic approximation */		static double p[] = {			-0.1633436431e-2,			 0.83645878922e-3,			-0.5951896861197e-3,			 0.793650576493454e-3,			-0.277777777735865004e-2,			 0.83333333333333101837e-1,		};			if (x >= MAXDOUBLE/LN_MAXDOUBLE) {			excp->type = OVERFLOW;			return (excp->retval);		}		z = (x - 0.5) * log(x) - x + GOOBIE;		if (x > X_MAX)			return (z);		x = 1/x;		y = x * x;		return (z + x * _POLY5(y, p));	}	y = 1;	if (x < y)		y /= (x * (y + x));	else if (x < 2) {		y /= x;		x -= 1;	} else {		for ( ; x >= 3; y *= x)			x -= 1;		x -= 2;	}	return (log(y * _POLY6(x, p2)/_POLY7(x, q2)));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -