📄 j0.c
字号:
/* @(#)j0.c 4.1 ULTRIX 7/17/90 *//************************************************************************ * * * Copyright (c) 1989 by * * Digital Equipment Corporation, Maynard, MA * * All rights reserved. * * * * This software is furnished under a license and may be used and * * copied only in accordance with the terms of such license and * * with the inclusion of the above copyright notice. This * * software or any other copies thereof may not be provided or * * otherwise made available to any other person. No title to and * * ownership of the software is hereby transferred. * * * * This software is derived from software received from the * * University of California, Berkeley, and from Bell * * Laboratories. Use, duplication, or disclosure is subject to * * restrictions under license agreements with University of * * California and with AT&T. * * * * The information in this software is subject to change without * * notice and should not be construed as a commitment by Digital * * Equipment Corporation. * * * * Digital assumes no responsibility for the use or reliability * * of its software on equipment which is not supplied by Digital. * * * ************************************************************************//************************************************************************ * Modification History * -------------------- * * 10-Nov-88 Tim N * Updated into bsd4.3-5, added checking for overflow (X_TLOSS) before * calling asympt(), took code from j1.c. Had id: * "@(#)j0.c 4.2 (Berkeley) 8/21/85; 5.1 (ucb.elefunt) 11/30/87"; ************************************************************************//* floating point Bessel's function of the first and second kinds of order zero j0(x) returns the value of J0(x) for all real values of x. There are no error returns. Calls sin, cos, sqrt. There is a niggling bug in J0 which causes errors up to 2e-16 for x in the interval [-8,8]. The bug is caused by an inappropriate order of summation of the series. rhm will fix it someday. Coefficients are from Hart & Cheney. #5849 (19.22D) #6549 (19.25D) #6949 (19.41D) y0(x) returns the value of Y0(x) for positive real values of x. For x<=0, if on the VAX, error number EDOM is set and the reserved operand fault is generated; otherwise (an IEEE machine) an invalid operation is performed. Calls sin, cos, sqrt, log, j0. The values of Y0 have not been checked to more than ten places. Coefficients are from Hart & Cheney. #6245 (18.78D) #6549 (19.25D) #6949 (19.41D)*/#include <values.h>#include <math.h>#if defined(vax)||defined(tahoe)#include <errno.h>#else /* defined(vax)||defined(tahoe) */static double zero = 0.e0;#endif /* defined(vax)||defined(tahoe) */static double pzero, qzero;static double tpi = .6366197723675813430755350535e0;static double pio4 = .7853981633974483096156608458e0;static double p1[] = { 0.4933787251794133561816813446e21, -.1179157629107610536038440800e21, 0.6382059341072356562289432465e19, -.1367620353088171386865416609e18, 0.1434354939140344111664316553e16, -.8085222034853793871199468171e13, 0.2507158285536881945555156435e11, -.4050412371833132706360663322e8, 0.2685786856980014981415848441e5,};static double q1[] = { 0.4933787251794133562113278438e21, 0.5428918384092285160200195092e19, 0.3024635616709462698627330784e17, 0.1127756739679798507056031594e15, 0.3123043114941213172572469442e12, 0.6699987672982239671814028660e9, 0.1114636098462985378182402543e7, 0.1363063652328970604442810507e4, 1.0};static double p2[] = { 0.5393485083869438325262122897e7, 0.1233238476817638145232406055e8, 0.8413041456550439208464315611e7, 0.2016135283049983642487182349e7, 0.1539826532623911470917825993e6, 0.2485271928957404011288128951e4, 0.0,};static double q2[] = { 0.5393485083869438325560444960e7, 0.1233831022786324960844856182e8, 0.8426449050629797331554404810e7, 0.2025066801570134013891035236e7, 0.1560017276940030940592769933e6, 0.2615700736920839685159081813e4, 1.0,};static double p3[] = { -.3984617357595222463506790588e4, -.1038141698748464093880530341e5, -.8239066313485606568803548860e4, -.2365956170779108192723612816e4, -.2262630641933704113967255053e3, -.4887199395841261531199129300e1, 0.0,};static double q3[] = { 0.2550155108860942382983170882e6, 0.6667454239319826986004038103e6, 0.5332913634216897168722255057e6, 0.1560213206679291652539287109e6, 0.1570489191515395519392882766e5, 0.4087714673983499223402830260e3, 1.0,};static double p4[] = { -.2750286678629109583701933175e20, 0.6587473275719554925999402049e20, -.5247065581112764941297350814e19, 0.1375624316399344078571335453e18, -.1648605817185729473122082537e16, 0.1025520859686394284509167421e14, -.3436371222979040378171030138e11, 0.5915213465686889654273830069e8, -.4137035497933148554125235152e5,};static double q4[] = { 0.3726458838986165881989980e21, 0.4192417043410839973904769661e19, 0.2392883043499781857439356652e17, 0.9162038034075185262489147968e14, 0.2613065755041081249568482092e12, 0.5795122640700729537480087915e9, 0.1001702641288906265666651753e7, 0.1282452772478993804176329391e4, 1.0,};doublej0(arg) double arg;{ double argsq, n, d; double sin(), cos(), sqrt(); int i; if(arg < 0.) arg = -arg; if(arg > 8.){ if( arg > X_TLOSS){ errno = ERANGE; return( 0.0 ); } asympt(arg); n = arg - pio4; return(sqrt(tpi/arg)*(pzero*cos(n) - qzero*sin(n))); } argsq = arg*arg; for(n=0,d=0,i=8;i>=0;i--){ n = n*argsq + p1[i]; d = d*argsq + q1[i]; } return(n/d);}doubley0(arg) double arg;{ double argsq, n, d; double sin(), cos(), sqrt(), log(), j0(); int i; if(arg <= 0.){#if defined(vax)||defined(tahoe) errno = EDOM; return( -HUGE_VAL );#else /* defined(vax)||defined(tahoe) */ return(zero/zero); /* IEEE machines: invalid operation */#endif /* defined(vax)||defined(tahoe) */ } if(arg > 8.){ if( arg > X_TLOSS){ errno = ERANGE; return( 0.0 ); } asympt(arg); n = arg - pio4; return(sqrt(tpi/arg)*(pzero*sin(n) + qzero*cos(n))); } argsq = arg*arg; for(n=0,d=0,i=8;i>=0;i--){ n = n*argsq + p4[i]; d = d*argsq + q4[i]; } return(n/d + tpi*j0(arg)*log(arg));}staticasympt(arg) double arg;{ double zsq, n, d; int i; zsq = 64./(arg*arg); for(n=0,d=0,i=6;i>=0;i--){ n = n*zsq + p2[i]; d = d*zsq + q2[i]; } pzero = n/d; for(n=0,d=0,i=6;i>=0;i--){ n = n*zsq + p3[i]; d = d*zsq + q3[i]; } qzero = (8./arg)*(n/d);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -