⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tan.s

📁 <B>Digital的Unix操作系统VAX 4.2源码</B>
💻 S
字号:
#ifndef lint#static char	*sccsid = "@(#)tan.s	4.1	(ULTRIX)	7/17/90";#endif lint/************************************************************************ *									* *			Copyright (c) 1986 by				* *		Digital Equipment Corporation, Maynard, MA		* *			All rights reserved.				* *									* *   This software is furnished under a license and may be used and	* *   copied  only  in accordance with the terms of such license and	* *   with the  inclusion  of  the  above  copyright  notice.   This	* *   software  or  any  other copies thereof may not be provided or	* *   otherwise made available to any other person.  No title to and	* *   ownership of the software is hereby transferred.			* *									* *   This software is  derived  from  software  received  from  the	* *   University    of   California,   Berkeley,   and   from   Bell	* *   Laboratories.  Use, duplication, or disclosure is  subject  to	* *   restrictions  under  license  agreements  with  University  of	* *   California and with AT&T.						* *									* *   The information in this software is subject to change  without	* *   notice  and should not be construed as a commitment by Digital	* *   Equipment Corporation.						* *									* *   Digital assumes no responsibility for the use  or  reliability	* *   of its software on equipment which is not supplied by Digital.	* *									* ************************************************************************//**************************************************************************			Modification History**	David Metsky, 12/18/86* 001	Adapted from tan.s 1.1 (Berkeley) 8/21/85**************************************************************************/# @(#)tan.s	1.1 (Berkeley) 8/21/85#  This is the implementation of Peter Tang's double precision  #  tangent for the VAX using Bob Corbett's argument reduction.#  #  Notes:#       under 1,024,000 random arguments testing on [0,2*pi] #       tan() observed maximum error = 2.15 ulps## double tan(arg)# double arg;# method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett# S. McDonald, April 4,  1985#	.globl	_tan	.text	.align	1_tan:	.word	0xffc		# save r2-r11	movq	4(ap),r0	bicw3	$0x807f,r0,r2	beql	1f		# if x is zero or reserved operand then return x## Save the PSL's IV & FU bits on the stack.#	movpsl	r2	bicw3	$0xff9f,r2,-(sp)##  Clear the IV & FU bits.#	bicpsw	$0x0060	jsb	libm$argred##  At this point,#	   r0  contains the quadrant number, 0, 1, 2, or 3;#	r2/r1  contains the reduced argument as a D-format number;#  	   r3  contains a F-format extension to the reduced argument;##  Save  r3/r0  so that we can call cosine after calling sine.#	movq	r2,-(sp)	movq	r0,-(sp)##  Call sine.  r4 = 0  implies sine.#	movl	$0,r4	jsb	libm$sincos##  Save  sin(x)  in  r11/r10 .#	movd	r0,r10##  Call cosine.  r4 = 1  implies cosine.#	movq	(sp)+,r0	movq	(sp)+,r2	movl	$1,r4	jsb	libm$sincos	divd3	r0,r10,r0	bispsw	(sp)+1:	ret

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -