📄 jn.c
字号:
/* @(#)jn.c 4.1 ULTRIX 7/17/90 *//* floating point Bessel's function of the first and second kinds and of integer order. int n; double x; jn(n,x); returns the value of Jn(x) for all integer values of n and all real values of x. There are no error returns. Calls j0, j1. For n=0, j0(x) is called, for n=1, j1(x) is called, for n<x, forward recursion us used starting from values of j0(x) and j1(x). for n>x, a continued fraction approximation to j(n,x)/j(n-1,x) is evaluated and then backward recursion is used starting from a supposed value for j(n,x). The resulting value of j(0,x) is compared with the actual value to correct the supposed value of j(n,x). yn(n,x) is similar in all respects, except that forward recursion is used for all values of n>1.*/#include <math.h>#include <errno.h>int errno;doublejn(n,x) int n; double x;{ int i; double a, b, temp; double xsq, t; double j0(), j1(); if(n<0){ n = -n; x = -x; } if(n==0) return(j0(x)); if(n==1) return(j1(x)); if(x == 0.) return(0.); if(n>x) goto recurs; a = j0(x); b = j1(x); for(i=1;i<n;i++){ temp = b; b = (2.*i/x)*b - a; a = temp; } return(b);recurs: xsq = x*x; for(t=0,i=n+16;i>n;i--){ t = xsq/(2.*i - t); } t = x/(2.*n-t); a = t; b = 1; for(i=n-1;i>0;i--){ temp = b; b = (2.*i/x)*b - a; a = temp; } return(t*j0(x)/b);}doubleyn(n,x) int n; double x;{ int i; int sign; double a, b, temp; double y0(), y1(); if (x <= 0) { errno = EDOM; return(-HUGE_VAL); } sign = 1; if(n<0){ n = -n; if(n%2 == 1) sign = -1; } if(n==0) return(y0(x)); if(n==1) return(sign*y1(x)); a = y0(x); b = y1(x); for(i=1;i<n;i++){ temp = b; b = (2.*i/x)*b - a; a = temp; } return(sign*b);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -