📄 sinh.c
字号:
#ifndef lintstatic char *sccsid ="@(#)sinh.c 4.1 ULTRIX 7/17/90";#endif lint/************************************************************************ * * * Copyright (c) 1986 by * * Digital Equipment Corporation, Maynard, MA * * All rights reserved. * * * * This software is furnished under a license and may be used and * * copied only in accordance with the terms of such license and * * with the inclusion of the above copyright notice. This * * software or any other copies thereof may not be provided or * * otherwise made available to any other person. No title to and * * ownership of the software is hereby transferred. * * * * This software is derived from software received from the * * University of California, Berkeley, and from Bell * * Laboratories. Use, duplication, or disclosure is subject to * * restrictions under license agreements with University of * * California and with AT&T. * * * * The information in this software is subject to change without * * notice and should not be construed as a commitment by Digital * * Equipment Corporation. * * * * Digital assumes no responsibility for the use or reliability * * of its software on equipment which is not supplied by Digital. * * * ************************************************************************//************************************************************************** Modification History** David Metsky 14-Jan-86** 001 Replaced old version with BSD 4.3 version as part of upgrade** 002 Jon Reeves, 1990-Jan-19* Corrected overflow limits.** Based on: sinh.c 4.3 8/21/85**************************************************************************//* SINH(X) * RETURN THE HYPERBOLIC SINE OF X * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 1/8/85; * REVISED BY K.C. NG on 2/8/85, 3/7/85, 3/24/85, 4/16/85. * * Required system supported functions : * copysign(x,y) * scalb(x,N) * * Required kernel functions: * expm1(x) ...return exp(x)-1 * * Method : * 1. reduce x to non-negative by sinh(-x) = - sinh(x). * 2. * * expm1(x) + expm1(x)/(expm1(x)+1) * 0 <= x <= lnovfl : sinh(x) := -------------------------------- * 2 * lnovfl <= x <= lnovfl+ln2 : sinh(x) := expm1(x)/2 (avoid overflow) * lnovfl+ln2 < x < INF : overflow to INF * * * Special cases: * sinh(x) is x if x is +INF, -INF, or NaN. * only sinh(0)=0 is exact for finite argument. * * Accuracy: * sinh(x) returns the exact hyperbolic sine of x nearly rounded. In * a test run with 1,024,000 random arguments on a VAX, the maximum * observed error was 1.93 ulps (units in the last place). * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */#include <errno.h>#include <math.h>#include <float.h>#define LN_MAXDOUBLE (M_LN2 * DBL_MAX_EXP)#ifdef VAX/* double static *//* mln2hi = 8.8029691931113054792E1 , Hex 2^ 7 * .B00F33C7E22BDB *//* mln2lo = -4.9650192275318476525E-16 , Hex 2^-50 * -.8F1B60279E582A *//* lnovfl = 8.8029691931113053016E1 ; Hex 2^ 7 * .B00F33C7E22BDA */static long mln2hix[] = { 0x0f3343b0, 0x2bdbc7e2};static long mln2lox[] = { 0x1b60a70f, 0x582a279e};static long lnovflx[] = { 0x0f3343b0, 0x2bdac7e2};#define mln2hi (*(double*)mln2hix)#define mln2lo (*(double*)mln2lox)#define lnovfl (*(double*)lnovflx)#else /* IEEE double */double static mln2hi = 7.0978271289338397310E2 , /*Hex 2^ 10 * 1.62E42FEFA39EF */mln2lo = 2.3747039373786107478E-14 , /*Hex 2^-45 * 1.ABC9E3B39803F */lnovfl = 7.0978271289338397310E2 ; /*Hex 2^ 9 * 1.62E42FEFA39EF */#endif#ifdef VAXstatic max = 126 ;#else /* IEEE double */static max = 1023 ;#endifdouble sinh(x)double x;{ static double one=1.0, half=1.0/2.0 ; double expm1(), t, scalb(), copysign(), sign; double max_arg; max_arg = LN_MAXDOUBLE + M_LN2;#ifndef vax if(x!=x) return(x); /* x is NaN */#endif if (x > max_arg) { errno = ERANGE; return(HUGE_VAL); } if (x < (-max_arg)) { errno = ERANGE; return(-HUGE_VAL); } sign=copysign(one,x); x=copysign(x,one); if(x<lnovfl) {t=expm1(x); return(copysign((t+t/(one+t))*half,sign));} else if(x <= lnovfl+0.7) /* subtract x by ln(2^(max+1)) and return 2^max*exp(x) to avoid unnecessary overflow */ return(copysign(scalb(one+expm1((x-mln2hi)-mln2lo),max),sign)); else /* sinh(+-INF) = +-INF, sinh(+-big no.) overflow to +-INF */ return( expm1(x)*sign );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -