📄 support.c
字号:
double sqrt(x)double x;{ double q,s,b,r; double logb(),scalb(); double t,zero=0.0; int m,n,i,finite();#ifdef VAX int k=54;#else /* IEEE */ int k=51;#endif /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */#ifndef vax if(x!=x) return(x);#endif if(x==zero) return(x); /* sqrt(negative) is invalid */ if(x<zero) {errno = EDOM; return(zero);} /* sqrt(INF) is INF */ if(!finite(x)) return(x); /* scale x to [1,4) */ n=logb(x); x=scalb(x,-n); if((m=logb(x))!=0) x=scalb(x,-m); /* subnormal number */ m += n; n = m/2; if((n+n)!=m) {x *= 2; m -=1; n=m/2;} /* generate sqrt(x) bit by bit (accumulating in q) */ q=1.0; s=4.0; x -= 1.0; r=1; for(i=1;i<=k;i++) { t=s+1; x *= 4; r /= 2; if(t<=x) { s=t+t+2, x -= t; q += r;} else s *= 2; } /* generate the last bit and determine the final rounding */ r/=2; x *= 4; if(x==zero) goto end; 100+r; /* trigger inexact flag */ if(s<x) { q+=r; x -=s; s += 2; s *= 2; x *= 4; t = (x-s)-5; b=1.0+3*r/4; if(b==1.0) goto end; /* b==1 : Round-to-zero */ b=1.0+r/4; if(b>1.0) t=1; /* b>1 : Round-to-(+INF) */ if(t>=0) q+=r; } /* else: Round-to-nearest */ else { s *= 2; x *= 4; t = (x-s)-1; b=1.0+3*r/4; if(b==1.0) goto end; b=1.0+r/4; if(b>1.0) t=1; if(t>=0) q+=r; } end: return(scalb(q,n));}#if 0/* DREM(X,Y) * RETURN X REM Y =X-N*Y, N=[X/Y] ROUNDED (ROUNDED TO EVEN IN THE HALF WAY CASE) * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * INTENDED FOR ASSEMBLY LANGUAGE * CODED IN C BY K.C. NG, 3/23/85, 4/8/85. * * Warning: this code should not get compiled in unless ALL of * the following machine-dependent routines are supplied. * * Required machine dependent functions (not on a VAX): * swapINX(i): save inexact flag and reset it to "i" * swapENI(e): save inexact enable and reset it to "e" */double drem(x,y) double x,y;{#ifdef NATIONAL /* order of words in floating point number */ static n0=3,n1=2,n2=1,n3=0;#else /* VAX, SUN, ZILOG */ static n0=0,n1=1,n2=2,n3=3;#endif static unsigned short mexp =0x7ff0, m25 =0x0190, m57 =0x0390; static double zero=0.0; double hy,y1,t,t1; short k; long n; int i,e; unsigned short xexp,yexp, *px =(unsigned short *) &x , nx,nf, *py =(unsigned short *) &y , sign, *pt =(unsigned short *) &t , *pt1 =(unsigned short *) &t1 ; xexp = px[n0] & mexp ; /* exponent of x */ yexp = py[n0] & mexp ; /* exponent of y */ sign = px[n0] &0x8000; /* sign of x *//* return NaN if x is NaN, or y is NaN, or x is INF, or y is zero */ if(x!=x) return(x); if(y!=y) return(y); /* x or y is NaN */ if( xexp == mexp ) return(zero/zero); /* x is INF */ if(y==zero) return(y/y);/* save the inexact flag and inexact enable in i and e respectively * and reset them to zero */ i=swapINX(0); e=swapENI(0); /* subnormal number */ nx=0; if(yexp==0) {t=1.0,pt[n0]+=m57; y*=t; nx=m57;}/* if y is tiny (biased exponent <= 57), scale up y to y*2**57 */ if( yexp <= m57 ) {py[n0]+=m57; nx+=m57; yexp+=m57;} nf=nx; py[n0] &= 0x7fff; px[n0] &= 0x7fff;/* mask off the least significant 27 bits of y */ t=y; pt[n3]=0; pt[n2]&=0xf800; y1=t;/* LOOP: argument reduction on x whenever x > y */loop: while ( x > y ) { t=y; t1=y1; xexp=px[n0]&mexp; /* exponent of x */ k=xexp-yexp-m25; if(k>0) /* if x/y >= 2**26, scale up y so that x/y < 2**26 */ {pt[n0]+=k;pt1[n0]+=k;} n=x/t; x=(x-n*t1)-n*(t-t1); } /* end while (x > y) */ if(nx!=0) {t=1.0; pt[n0]+=nx; x*=t; nx=0; goto loop;}/* final adjustment */ hy=y/2.0; if(x>hy||((x==hy)&&n%2==1)) x-=y; px[n0] ^= sign; if(nf!=0) { t=1.0; pt[n0]-=nf; x*=t;}/* restore inexact flag and inexact enable */ swapINX(i); swapENI(e); return(x); }#endif#if 0/* SQRT * RETURN CORRECTLY ROUNDED (ACCORDING TO THE ROUNDING MODE) SQRT * FOR IEEE DOUBLE PRECISION ONLY, INTENDED FOR ASSEMBLY LANGUAGE * CODED IN C BY K.C. NG, 3/22/85. * * Warning: this code should not get compiled in unless ALL of * the following machine-dependent routines are supplied. * * Required machine dependent functions: * swapINX(i) ...return the status of INEXACT flag and reset it to "i" * swapRM(r) ...return the current Rounding Mode and reset it to "r" * swapENI(e) ...return the status of inexact enable and reset it to "e" * addc(t) ...perform t=t+1 regarding t as a 64 bit unsigned integer * subc(t) ...perform t=t-1 regarding t as a 64 bit unsigned integer */static unsigned long table[] = {0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, 29598, 36145, 43202, 50740,58733, 67158, 75992, 85215, 83599, 71378, 60428, 50647, 41945, 34246, 27478,21581, 16499, 12183, 8588, 5674, 3403, 1742, 661, 130, };double newsqrt(x)double x;{ double y,z,t,addc(),subc(),b54=134217728.*134217728.; /* b54=2**54 */ long mx,scalx,mexp=0x7ff00000; int i,j,r,e,swapINX(),swapRM(),swapENI(); unsigned long *py=(unsigned long *) &y , *pt=(unsigned long *) &t , *px=(unsigned long *) &x ;#ifdef NATIONAL /* ordering of word in a floating point number */ int n0=1, n1=0; #else int n0=0, n1=1; #endif/* Rounding Mode: RN ...round-to-nearest * RZ ...round-towards 0 * RP ...round-towards +INF * RM ...round-towards -INF */ int RN=0,RZ=1,RP=2,RM=3;/* machine dependent: work on a Zilog Z8070 * and a National 32081 & 16081 *//* exceptions */ if(x!=x||x==0.0) return(x); /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */ if(x<0) return((x-x)/(x-x)); /* sqrt(negative) is invalid */ if((mx=px[n0]&mexp)==mexp) return(x); /* sqrt(+INF) is +INF *//* save, reset, initialize */ e=swapENI(0); /* ...save and reset the inexact enable */ i=swapINX(0); /* ...save INEXACT flag */ r=swapRM(RN); /* ...save and reset the Rounding Mode to RN */ scalx=0;/* subnormal number, scale up x to x*2**54 */ if(mx==0) {x *= b54 ; scalx-=0x01b00000;}/* scale x to avoid intermediate over/underflow: * if (x > 2**512) x=x/2**512; if (x < 2**-512) x=x*2**512 */ if(mx>0x5ff00000) {px[n0] -= 0x20000000; scalx+= 0x10000000;} if(mx<0x1ff00000) {px[n0] += 0x20000000; scalx-= 0x10000000;}/* magic initial approximation to almost 8 sig. bits */ py[n0]=(px[n0]>>1)+0x1ff80000; py[n0]=py[n0]-table[(py[n0]>>15)&31];/* Heron's rule once with correction to improve y to almost 18 sig. bits */ t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0;/* triple to almost 56 sig. bits; now y approx. sqrt(x) to within 1 ulp */ t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y; t=z/(t+x) ; pt[n0]+=0x00100000; y+=t;/* twiddle last bit to force y correctly rounded */ swapRM(RZ); /* ...set Rounding Mode to round-toward-zero */ swapINX(0); /* ...clear INEXACT flag */ swapENI(e); /* ...restore inexact enable status */ t=x/y; /* ...chopped quotient, possibly inexact */ j=swapINX(i); /* ...read and restore inexact flag */ if(j==0) { if(t==y) goto end; else t=subc(t); } /* ...t=t-ulp */ b54+0.1; /* ..trigger inexact flag, sqrt(x) is inexact */ if(r==RN) t=addc(t); /* ...t=t+ulp */ else if(r==RP) { t=addc(t);y=addc(y);}/* ...t=t+ulp;y=y+ulp; */ y=y+t; /* ...chopped sum */ py[n0]=py[n0]-0x00100000; /* ...correctly rounded sqrt(x) */end: py[n0]=py[n0]+scalx; /* ...scale back y */ swapRM(r); /* ...restore Rounding Mode */ return(y);}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -