📄 pow.c
字号:
#ifndef lintstatic char *sccsid ="@(#)pow.c 4.1 ULTRIX 7/17/90";#endif lint/************************************************************************ * * * Copyright (c) 1986 by * * Digital Equipment Corporation, Maynard, MA * * All rights reserved. * * * * This software is furnished under a license and may be used and * * copied only in accordance with the terms of such license and * * with the inclusion of the above copyright notice. This * * software or any other copies thereof may not be provided or * * otherwise made available to any other person. No title to and * * ownership of the software is hereby transferred. * * * * This software is derived from software received from the * * University of California, Berkeley, and from Bell * * Laboratories. Use, duplication, or disclosure is subject to * * restrictions under license agreements with University of * * California and with AT&T. * * * * The information in this software is subject to change without * * notice and should not be construed as a commitment by Digital * * Equipment Corporation. * * * * Digital assumes no responsibility for the use or reliability * * of its software on equipment which is not supplied by Digital. * * * ************************************************************************//************************************************************************** Modification History* 002 Tim N* Changed to be XPG3 error handling.** David Metsky 14-Jan-86** 001 Replaced old version with BSD 4.3 version as part of upgrade** Based on: pow.c 4.5 8/21/85**************************************************************************//* POW(X,Y) * RETURN X**Y * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 1/8/85; * REVISED BY K.C. NG on 7/10/85. * * Required system supported functions: * scalb(x,n) * logb(x) * copysign(x,y) * finite(x) * drem(x,y) * * Required kernel functions: * exp__E(a,c) ...return exp(a+c) - 1 - a*a/2 * log__L(x) ...return (log(1+x) - 2s)/s, s=x/(2+x) * pow_p(x,y) ...return +(anything)**(finite non zero) * * Method * 1. Compute and return log(x) in three pieces: * log(x) = n*ln2 + hi + lo, * where n is an integer. * 2. Perform y*log(x) by simulating muti-precision arithmetic and * return the answer in three pieces: * y*log(x) = m*ln2 + hi + lo, * where m is an integer. * 3. Return x**y = exp(y*log(x)) * = 2^m * ( exp(hi+lo) ). * * Special cases: * (anything) ** 0 is 1 ; * (anything) ** 1 is itself; * (anything) ** NaN is NaN; * NaN ** (anything except 0) is NaN; * +-(anything > 1) ** +INF is +INF; * +-(anything > 1) ** -INF is +0; * +-(anything < 1) ** +INF is +0; * +-(anything < 1) ** -INF is +INF; * +-1 ** +-INF is NaN and signal INVALID; * +0 ** +(anything except 0, NaN) is +0; * -0 ** +(anything except 0, NaN, odd integer) is +0; * +0 ** -(anything except 0, NaN) is +INF and signal DIV-BY-ZERO; * -0 ** -(anything except 0, NaN, odd integer) is +INF with signal; * -0 ** (odd integer) = -( +0 ** (odd integer) ); * +INF ** +(anything except 0,NaN) is +INF; * +INF ** -(anything except 0,NaN) is +0; * -INF ** (odd integer) = -( +INF ** (odd integer) ); * -INF ** (even integer) = ( +INF ** (even integer) ); * -INF ** -(anything except integer,NaN) is NaN with signal; * -(x=anything) ** (k=integer) is (-1)**k * (x ** k); * -(anything except 0) ** (non-integer) is NaN with signal; * * Accuracy: * pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX, * and a Zilog Z8000, * pow(integer,integer) * always returns the correct integer provided it is representable. * In a test run with 100,000 random arguments with 0 < x, y < 20.0 * on a VAX, the maximum observed error was 1.79 ulps (units in the * last place). * * Constants : * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */#include <math.h>#include <errno.h>#ifdef VAX /* VAX D format *//* double static *//* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 *//* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC *//* invln2 = 1.4426950408889634148E0 , Hex 2^ 1 * .B8AA3B295C17F1 *//* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */static long ln2hix[] = { 0x72174031, 0x0000f7d0};static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};static long invln2x[] = { 0xaa3b40b8, 0x17f1295c};static long sqrt2x[] = { 0x04f340b5, 0xde6533f9};#define ln2hi (*(double*)ln2hix)#define ln2lo (*(double*)ln2lox)#define invln2 (*(double*)invln2x)#define sqrt2 (*(double*)sqrt2x)#else /* IEEE double */double staticln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */invln2 = 1.4426950408889633870E0 , /*Hex 2^ 0 * 1.71547652B82FE */sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */#endifdouble static zero=0.0, half=1.0/2.0, one=1.0, two=2.0, negone= -1.0;double pow(x,y) double x,y;{ double drem(),pow_p(),copysign(),t; int finite(); if(y==0.0) return(one); if(x==0.0){ if(y < 0){ errno = EDOM; return ( -HUGE_VAL ); } return(0.0); } else if(y==one#ifndef vax ||x!=x#endif ) return( x ); /* if x is NaN or y=1 */#ifndef vax else if(y!=y) return( y ); /* if y is NaN */#endif else if(!finite(y)) /* if y is INF */ if((t=copysign(x,one))==one) return(zero); else if(t>one) return((y>zero)?y:zero); else return((y<zero)?-y:zero); else if(y==two) return(x*x); else if(y==negone) return(one/x); /* sign(x) = 1 */ else if(copysign(one,x)==one) return(pow_p(x,y)); /* sign(x)= -1 */ /* if y is an even integer */ else if (floor(y/2.0)==(y/2.0)) return( pow_p(-x,y) ); /* if y is an odd integer */ else if (floor((y+1.0)/2.0)==((y+1.0)/2.0)) return( -pow_p(-x,y) ); /* Henceforth y is not an integer */ else if(x==zero) /* x is -0 */ return((y>zero)?-x:one/(-x)); else { errno = EDOM; return(0.0); }}/* pow_p(x,y) return x**y for x with sign=1 and finite y */static double pow_p(x,y) double x,y;{ double logb(),scalb(),copysign(),log__L(),exp__E(); double c,s,t,z,tx,ty; float sx,sy; long k=0; int n,m; if(!finite(x)){ errno = ERANGE; return(0.0); /* HUGE to power of finite non 0 y */ } if(x==1.0) return(x); /* if x=1.0, return 1 since y is finite */ /* reduce x to z in [sqrt(1/2)-1, sqrt(2)-1] */ z=scalb(x,-(n=logb(x))); if(n <= -1022) {n += (m=logb(z)); z=scalb(z,-m);} if(z >= sqrt2 ) {n += 1; z *= half;} z -= one ; /* log(x) = nlog2+log(1+z) ~ nlog2 + t + tx */ s=z/(two+z); c=z*z*half; tx=s*(c+log__L(s*s)); t= z-(c-tx); tx += (z-t)-c; /* if y*log(x) is neither too big nor too small */ if((s=logb(y)+logb(n+t)) < 12.0) if(s>-60.0) { /* compute y*log(x) ~ mlog2 + t + c */ s=y*(n+invln2*t); m=s+copysign(half,s); /* m := nint(y*log(x)) */ k=y; if((double)k==y) { /* if y is an integer */ k = m-k*n; sx=t; tx+=(t-sx); } else { /* if y is not an integer */ k =m; tx+=n*ln2lo; sx=(c=n*ln2hi)+t; tx+=(c-sx)+t; } /* end of checking whether k==y */ sy=y; ty=y-sy; /* y ~ sy + ty */ s=(double)sx*sy-k*ln2hi; /* (sy+ty)*(sx+tx)-kln2 */ z=(tx*ty-k*ln2lo); tx=tx*sy; ty=sx*ty; t=ty+z; t+=tx; t+=s; c= -((((t-s)-tx)-ty)-z); /* return exp(y*log(x)) */ t += exp__E(t,c); return(scalb(one+t,m)); } /* end of if log(y*log(x)) > -60.0 */ else /* exp(+- tiny) = 1 with inexact flag */ {ln2hi+ln2lo; return(one);} else if(copysign(one,y)*(n+invln2*t) <zero) /* exp(-(big#)) underflows to zero */ { errno = ERANGE; return(0.0); } else /* exp(+(big#)) overflows to INF */ { errno = ERANGE; return(HUGE_VAL); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -